Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analysis of complex mixtures

There are several forms of electrophoresis. In slab gel electrophoresis the conducting buffer is retained within a porous gel of agarose or polyacrylamide. Slabs are formed by pouring the gel between two glass plates separated by spacers. Typical thicknesses are 0.25-1 mm. Gel electrophoresis is an important technique in biochemistry, in which it is frequently used for DNA sequencing. Although it is a powerful tool for the qualitative analysis of complex mixtures, it is less useful for quantitative work. [Pg.597]

Tandem mass spectrometry or ms/ms was first introduced in the 1970s and gained rapid acceptance in the analytical community. The technique has been used for stmcture elucidation of unknowns (26) and has the abiUty to provide sensitive and selective analysis of complex mixtures with minimal sample clean-up (27). Developments in the mid-1980s advancing the popularity of ms/ms included the availabiUty of powerhil data systems capable of controlling the ms/ms experiment and the viabiUty of soft ionisation techniques which essentially yield only molecular ion species. [Pg.405]

The limitations of one-dimensional (ID) chromatography in the analysis of complex mixtures are even more evident if a statistical method of overlap (SMO) is applied. The work of Davis and Giddings (26), and of Guiochon and co-workers (27), recently summarized by Jorgenson and co-workers (28) and Bertsch (29), showed how peak capacity is only the maximum number of mixture constituents which a chromatographic system may resolve. Because the peaks will be randomly rather than evenly distributed, it is inevitable that some will overlap. In fact, an SMO approach can be used to show how the number of resolved simple peaks (5) is related to n and the actual number of components in the mixture (m) by the following ... [Pg.8]

Today, the various chromatographic techniques represent the major parts of modem analytical chemistry. However, it is well known that the analysis of complex mixtures often requires more than one separation process in order to resolve all of the components present in a sample. This realization has generated a considerable interest in the area of two-dimensional separation techniques. The basics of LC-LC and its practical aspects have been covered in this chapter. [Pg.129]

Multidimensional separations allow for the analysis of complex mixtures, such as those from biological matrices with thousands of components that would be difficult or impossible to separate by utilizing only one method. Electrodriven separations have been employed to separate biological molecules for many years, due to the charged nature of amino acids and nucleic acids. The addition of an electrodriven component to a multidimensional separation is therefore desirable, especially for the separation of biological mixtures. [Pg.197]

Electrodriven techniques are useful as components in multidimensional separation systems due to their unique mechanisms of separation, high efficiency and speed. The work carried out by Jorgenson and co-workers has demonstrated the high efficiencies and peak capacities that are possible with comprehensive multidimensional electrodriven separations. The speed and efficiency of CZE makes it possibly the best technique to use for the final dimension in a liquid phase multidimensional separation. It can be envisaged that multidimensional electrodriven techniques will eventually be applied to the analysis of complex mixtures of all types. The peak capacities that can result from these techniques make them extraordinarily powerful tools. When the limitations of one-dimensional separations are finally realized, and the simplicity of multidimensional methods is enhanced, the use of multidimensional electrodriven separations may become more widespread. [Pg.213]

Standard addition. The sample is chromatographed before and after the addition of an accurately known amount of the pure component to be determined, and its weight in the sample is then derived from the ratio of its peak areas in the two chromatograms. Standard addition is particularly useful in the analysis of complex mixtures where it may be difficult to find an internal standard which meets the necessary requirements. [Pg.247]

Most informative in this context is vibrational spectroscopy since the number of signals observed depends on the molecular size as well as on the symmetry of the molecule and, if it is part of a condensed phase, of its environment. In particular, Raman spectroscopy has contributed much to the elucidation of the various allotropes of elemental sulfur and to the analysis of complex mixtures such as hquid and gaseous sulfur. [Pg.33]

Adsorption, a surface phenomenon, is the basis of many gas or liquid mixture separation and purification methods. It is also the basis of adsorption chromatographic methods used for the analysis of complex mixtures. The knowledge of adsorption mechaiusms is useful in choosing the suitable systems providing optimum separation. [Pg.87]

Until fairly recently, IR spectroscopy was scarcely used in quantitative analysis owing to its many inherent shortcomings (e.g. extensive band overlap, failure to fulfil Beer s law over wide enough concentration ranges, irreproducible baselines, elevated instrumental noise, low sensitivity). The advent of FTIR spectroscopy, which overcomes some of these drawbacks, in addition to the development of powerful chemometric techniques for data processing, provides an effective means for tackling the analysis of complex mixtures without the need for any prior separation of their components. [Pg.315]

Wilson et al. [662-665] have described various prototype systems for total organic analysis devices. It has proved technically feasible to obtain UV, IR, NMR and MS spectra (together with atomic composition based on accurate mass determination) following RPLC separation. The fully integrated approach offers the benefit that one chromatographic run is required, thus ensuring that all of the spectrometers observe the same separation. Such multiple hyphenations might favour the analysis of complex mixtures for both confirmation of identity and structure determination (should this represent a cost-effective approach). Table 7.72 illustrates the main features of on-flow multiple LC hyphenation. [Pg.522]

Applications Applications of SEC-FTIR include quantitative analysis of copolymers [701] product deformulation of hot melt adhesives characterisation of polymer compositional heterogeneity analysis of complex mixtures of urethane oligomers and eventually also the identification and quantitative analysis of polymer additives... [Pg.528]

With recent instrumental development, such as fast LC, fast GC and two-dimensional gas chromatography (GCxGC) and advanced tandem hybrid MS detection systems (i.e., QqTOF, QqLIT, Orbitrap) the analysis of complex mixtures... [Pg.31]

Liu, H. J., Berger, S. J., Chakrahorty, A. B., Plumh, R. S., Cohen, S. A. (2002). Multidimensional chromatography coupled to electrospray ionization time-of-fhght mass spectrometry as an alternative to two-dimensional gels for the identification and analysis of complex mixtures of intact proteins. J. Chromatogr. B 782(1-2), 267-289. [Pg.240]

V. Mazel, P. Richardin, D. Touboul, A. Brunelle, P. Walter and O. Laprevote, Chemical imaging techniques for the analysis of complex mixtures new application to the characterization of ritual matters on African wooden statuettes, Analytica ChimicaActa, 570, 34 40 (2006). [Pg.456]

The discovery of the usefulness of the trimethylsilyl derivatives for the gas chromatography of a sample was a major step forward in the analysis of complex mixtures. [Pg.399]

This technique was used by Delmas et al. [404] to separate lipid extracts in seawater into various classes. Lipid classes that have been eluted away from the point of application may be burnt off the rod in a partial scan, allowing those lipids remaining near the origin to be developed into the place that has just been simultaneously scanned and reactivated. By analysis of complex mixtures of neutral lipids in this stepwise manner it is possible to be more selective about lipid class separations as well as to be more confident about assigning identities to peaks obtained from a seawater sample. In addition, this approach also reduces the possibility of peak contamination by impurities which would normally coelute with marine lipid classes (e.g., phthalate esters [403]). [Pg.426]

In the last decade, capillary electrophoresis (CE) has become one of the most powerful and conceptually simple separation techniques for the analysis of complex mixtures. The main reasons are its high resolution, relatively short analysis times, and low operational cost when compared to high-performance liquid chromatography (HPLC). The ability to analyze ultrasmall volume samples in the picoliter-to-nanoliter ranges makes it an ideal analytical method for extremely volume-limited biological microenvironments. [Pg.428]

Although simple intensity correction techniques can be used to develop very adequate XRPD methods of quantitative analysis, the introduction of more sophisticated data acquisition and handling techniques can greatly improve the quality of the developed method. For instance, improvement of the powder pattern quality through the use of the Rietveld method has been used to evaluate mixtures of two anhydrous polymorphs of carbamazepine and the dihydrate solvatomorph [43]. The method of whole pattern analysis developed by Rietveld [44] has found widespread use in crystal structure refinement and in the quantitative analysis of complex mixtures. Using this approach, the detection of analyte species was possible even when their concentration was less than 1% in the sample matrix. It was reported that good quantitation of analytes could be obtained in complex mixtures even without the requirement of calibration curves. [Pg.212]

The use of ion pairing agents, such as sodium benzenesulfonate, may be helpful in the analysis of complex mixtures of quaternary ammonium compounds, as they modify their retention times418. [Pg.1118]

Despite the broad definition of chemometrics, the most important part of it is the application of multivariate data analysis to chemistry-relevant data. Chemistry deals with compounds, their properties, and their transformations into other compounds. Major tasks of chemists are the analysis of complex mixtures, the synthesis of compounds with desired properties, and the construction and operation of chemical technological plants. However, chemical/physical systems of practical interest are often very complicated and cannot be described sufficiently by theory. Actually, a typical chemometrics approach is not based on first principles—that means scientific laws and mles of nature—but is data driven. Multivariate statistical data analysis is a powerful tool for analyzing and structuring data sets that have been obtained from such systems, and for making empirical mathematical models that are for instance capable to predict the values of important properties not directly measurable (Figure 1.1). [Pg.15]

Sweeley, C. C., Holland, J. F., Towson, D. S., Chamberlin, B. A. J. Chromatogr. A 399, 1987, 173-181. Interactive and multi-sensory analysis of complex mixtures by an automated gas chromatography system. [Pg.296]

Capillary gas chromatography allows the analysis of complex mixtures of compounds to be carried out. However, the analysis time per sample is inherently long in order to obtain high resolution of the components, and this limits the throughput of samples. Slurry samples are biotic and therefore subject to continuing changes which are reflected... [Pg.315]


See other pages where Analysis of complex mixtures is mentioned: [Pg.11]    [Pg.405]    [Pg.427]    [Pg.499]    [Pg.37]    [Pg.406]    [Pg.920]    [Pg.921]    [Pg.961]    [Pg.172]    [Pg.201]    [Pg.234]    [Pg.340]    [Pg.340]    [Pg.462]    [Pg.463]    [Pg.545]    [Pg.551]    [Pg.123]    [Pg.522]    [Pg.200]    [Pg.29]    [Pg.60]    [Pg.361]    [Pg.63]    [Pg.232]   
See also in sourсe #XX -- [ Pg.475 ]

See also in sourсe #XX -- [ Pg.651 ]




SEARCH



Analysis of mixtures

Complex analysis

Complex mixtures

Quantitative analysis of complex mixtures

© 2024 chempedia.info