Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analysis heart

Tomaszewski M, White C, Patel P et al (2014) High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 100 855-861 Viswanathan M, Golin CE, Jones CD et al (2012) Interventions to improve adherence to self-administered medications for chronic diseases in the United States a systematic review. Ann Intern Med 157 785-795... [Pg.326]

Nowadays the one of the leading cause of death in industrial country is Heart Failure (HF). Under the pathological conditions (e.g., Ischemic Heart Disease (IHD)) the changes in the enzymes activity and ultrastructure of tissue were obtained. The behavior of trace elements may reflect the activity of different types of enzymes. Pathological changes affects only small area of tissue, hence the amount of samples is strictly limited. Thereby, nondestructive multielemental method SRXRF allow to perfonu the analysis of mass samples in a few milligrams, to save the samples, to investigate the elemental distribution on the sample area. [Pg.353]

More commonly, a fraction, based on chemical type, molecular weight or volatility, is heart-cut from the eluent of the primary column and introduced into a secondary column for more detailed analysis. If the same mobile phase is used in both dimensions, fractions may be diverted by means of pressure changes-an approach first used in 1968 in GC-GC by Deans (35), and applied by Davies et al. in SFC-SFC (36). If the mobile phases are different, valves are employed, and special... [Pg.11]

Figure 3.4 Two-dimensional separation of dimethylnaphthalenes in crude oil using a 50 m methyl (95%)/phenyl (5%) polysiloxane primary column and a 50 m methyl (50%)/phenyl (25%)/cyanopropyl (25%) polysiloxane secondary column. The top trace indicates the primary separation monitor, while the following chromatograms indicate individual heart-cut secondary analysis. Reproduced from R.G. Schafer and J. Holtkemerr, Anal. Chim. Acta. 1992, 260, 107 (20). Figure 3.4 Two-dimensional separation of dimethylnaphthalenes in crude oil using a 50 m methyl (95%)/phenyl (5%) polysiloxane primary column and a 50 m methyl (50%)/phenyl (25%)/cyanopropyl (25%) polysiloxane secondary column. The top trace indicates the primary separation monitor, while the following chromatograms indicate individual heart-cut secondary analysis. Reproduced from R.G. Schafer and J. Holtkemerr, Anal. Chim. Acta. 1992, 260, 107 (20).
Figure 3.5 Two-dimensional GC analysis of tobacco essential oil using non-polar primary and polar secondary separ-ations. The top tr-ace indicates the primary separ-ation, with the four resulting heart-cut cliromatograms shown below being obtained on the transfer of approximately 1-2 min fractions of primary eluent. Reproduced from B.M. Gordon et al. J. Chwmatogr. Sci. 1988, 26, 174 (23). Figure 3.5 Two-dimensional GC analysis of tobacco essential oil using non-polar primary and polar secondary separ-ations. The top tr-ace indicates the primary separ-ation, with the four resulting heart-cut cliromatograms shown below being obtained on the transfer of approximately 1-2 min fractions of primary eluent. Reproduced from B.M. Gordon et al. J. Chwmatogr. Sci. 1988, 26, 174 (23).
Figure 3.7 shows some early examples of this type of analysis (39), illustrating the GC determination of the stereoisomeric composition of lactones in (a) a fruit drink (where the ratio is racemic, and the lactone is added artificially) and (b) a yoghurt, where the non-racemic ratio indicates no adulteration. Technically, this separation was enabled on a short 10 m slightly polar primary column coupled to a chiral selective cyclodextrin secondary column. Both columns were independently temperature controlled and the transfer cut performed by using a Deans switch, with a backflush of the primary column following the heart-cut. [Pg.65]

Step 4) Precolumn clean-up not shown in Figure 5.4. After the heart-cut analytes have been transferred to the analytical column, a step-gradient programme is used to flush the precolumn of the more strongly retained compounds. An additional pump configuration makes precolumn clean-up possible while the analysis is running. [Pg.125]

Figure 10.3 Gas cliromatograms of a cold-pressed lemon oil obtained (a) with an SE-52 column in the stand-by position and (b) with the same column showing the five heart-cuts (c) shows the GC-GC chiral chromatogram of the ti ansfeired components. The asterisks in (b) indicate electric spikes coming from the valve switcliing. The conditions were as follows SE-52 pre-column, 30 m, 0.32 mm i.d., 0.40 - 0.45 p.m film tliickness cairier gas He, 90 KPa (stand-by position) and 170 KPa (cut position) oven temperature, 45 °C (6 min)-240 °C at 2 °C/min diethyl-tert-butyl-/3-cyclodextrin column, 25 m X 0.25 mm i.d., 0.25 p.m film thickness cairier gas He, 110 KPa (stand-by position) and 5 KPa (cut position) oven temperature, 45 °C (6 min), rising to 90 °C (10 min) at 2 °C/min, and then to 230 °C at 2 °C/min. Reprinted from Journal of High Resolution Chromatography, 22, L. Mondello et al, Multidimensional capillary GC-GC for the analysis of real complex samples. Part IV. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of lemon oils , pp. 350-356, 1999, with permission from Wiley-VCH. Figure 10.3 Gas cliromatograms of a cold-pressed lemon oil obtained (a) with an SE-52 column in the stand-by position and (b) with the same column showing the five heart-cuts (c) shows the GC-GC chiral chromatogram of the ti ansfeired components. The asterisks in (b) indicate electric spikes coming from the valve switcliing. The conditions were as follows SE-52 pre-column, 30 m, 0.32 mm i.d., 0.40 - 0.45 p.m film tliickness cairier gas He, 90 KPa (stand-by position) and 170 KPa (cut position) oven temperature, 45 °C (6 min)-240 °C at 2 °C/min diethyl-tert-butyl-/3-cyclodextrin column, 25 m X 0.25 mm i.d., 0.25 p.m film thickness cairier gas He, 110 KPa (stand-by position) and 5 KPa (cut position) oven temperature, 45 °C (6 min), rising to 90 °C (10 min) at 2 °C/min, and then to 230 °C at 2 °C/min. Reprinted from Journal of High Resolution Chromatography, 22, L. Mondello et al, Multidimensional capillary GC-GC for the analysis of real complex samples. Part IV. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of lemon oils , pp. 350-356, 1999, with permission from Wiley-VCH.
Another way to improve the analysis of complex matrices can be the combination of a multidimensional system with information-rich spectral detection (31). The analysis of eucalyptus and cascarilla bark essential oils has been carried out with an MDGC instrument, coupling a fast second chromatograph with a matrix isolation infrared spectrometer. Eluents from the first column were heart-cut and transferred to a cryogenically cooled trap. The trap is then heated to re-inject the components into an analytical column of different selectivity for separation and subsequent detection. The problem of the mismatch between the speed of fast separation and the... [Pg.229]

Multidimensional HPLC offers very high separation power when compared to monodimensional LC analysis. Thus, it can be applied to the analysis of very complex mixtures. Applications of on-line MD-HPLC have been developed, using various techniques such as heart-cut, on-column concentration or trace enrichment applications in which liquid phases on both columns are miscible and compatible are frequently reported, but the on-line coupling of columns with incompatible mobile phases have also been studied. [Pg.231]

In biomedical analysis, LC-LC has been used most extensively and successfully in the heart-cut mode for the analysis of drugs and related compounds in matrices Such as plasma, serum or urine. Table 11.1 gives an overview of analytes in biological matrices which have been determined by heart-cut LC-LC systems. A typical example of such an approach is the work of Eklund et al. (16) who determined the free concentration of sameridine, an anaesthetic and analgesic drug, in blood plasma... [Pg.254]

Presently, the on-line coupling of NPLC and GC via heart-cutting is an established procedure which has been used successfully for several bioanalytical applications. Obviously, dfrect analysis of aqueous samples is not possible by NPLC, and therefore, a solvent switch by a sample pretreatment step (e.g. liquid-liquid extraction or SPE) is always requfred when biological samples are analysed by NPLC-GC. [Pg.276]

When columns of the same polarity are used, the elution order of components in GC are not changed and there is no need for trapping. However, when columns of different polarities are used trapping or heart-cutting must be employed. Trapping can be used in trace analysis for enrichment of samples by repetitive preseparation before the main separation is initiated and the total amount or part of a mixture can then be effectively and quantitatively transferred to a second column. The main considerations for a trap are that it should attain either very high or very low temperatures over a short period of time and be chemically inactive. The enrichment is usually carried out with a cold trap, plus an open vent after this, where the trace components are held within the trap and the excess carrier gas is vented. Then, in the re-injection mode the vent behind the trap is closed, the trap is heated and the trapped compounds can be rapidly flushed from the trap and introduced into the second column. Peak broadening and peak distortion, which could occur in the preseparation, are suppressed or eliminated by this re-injection procedure (18). [Pg.317]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

Another application of SFC-GC was for the isolation of chrysene, a poly aromatic hydrocarbon, from a complex liquid hydrocarbon industrial sample (24). A 5 p.m octadecyl column (200 cm X 4.6 mm i.d.) was used for the preseparation, followed by GC analysis on an SE-54 column (25 m X 0.2 mm i.d., 0.33 p.m film thickness). The direct analysis of whole samples transferred from the supercritical fluid chromatograph and selective and multi-heart-cutting of a particular region as it elutes from the SFC system was demonstrated. The heart-cutting technique allows the possibility of separating a trace component from a complex mixture (Figure 12.21). [Pg.327]

Most applications in environmental analysis involve heart-cut GC-GC, while comprehensive multidimensional gas chromatography is the most widely used technique for analysing extremely complex mixtures such as those found in the petroleum industry (21). [Pg.337]

A commonly used system in environmental analysis is the heart-cutting technique which uses the separation power of the first column to obtain a higher selectivity than with the previously described precolumn enrichment. The two columns are coupled via a switching valve, as shown in Figure 13.5. [Pg.343]

Recently, multidimensional GC has been employed in enantioselective analysis by placing a chiral stationary phase such as a cyclodextrin in the second column. Typically, switching valves are used to heart-cut the appropriate portion of the separation from a non-chiral column into a chiral column. Heil et al. used a dual column system consisting of a non-chiral pre-column (30 m X 0.25 mm X 0.38 p.m, PS-268) and a chiral (30 m X 0.32 mm X 0.64 p.m, heptakis(2,3-di-(9-methyl-6-(9-tert-butyldimethylsilyl)-(3-cyclodextrin) (TBDM-CD) analytical column to separate derivatized urinary organic acids that are indicative of metabolic diseases such as short bowel syndrome, phenylketonuria, tyrosinaemia, and others. They used a FID following the pre-column and an ion trap mass-selective detector following the... [Pg.415]

Figure 15.8 shows the multidimensional GC analysis of urinary aeids, following lyophilization and derivatization by methyl ehloroformate. In this figure, ehromatogram (a) shows the eomplexity of the urine matrix and the need for a seeond separation dimension. A heart-eut is taken over a small range at about 45 min. The... [Pg.416]


See other pages where Analysis heart is mentioned: [Pg.242]    [Pg.528]    [Pg.242]    [Pg.528]    [Pg.720]    [Pg.225]    [Pg.52]    [Pg.400]    [Pg.458]    [Pg.456]    [Pg.118]    [Pg.1]    [Pg.48]    [Pg.52]    [Pg.59]    [Pg.63]    [Pg.70]    [Pg.70]    [Pg.72]    [Pg.123]    [Pg.125]    [Pg.218]    [Pg.232]    [Pg.233]    [Pg.254]    [Pg.262]    [Pg.275]    [Pg.305]    [Pg.336]    [Pg.408]    [Pg.419]    [Pg.422]    [Pg.265]   
See also in sourсe #XX -- [ Pg.198 , Pg.636 ]




SEARCH



Coronary heart disease meta-analysis studies

Heart sounds analysis

Subfractionation, and Enzymatic Analysis of Beef Heart Mitochondria

© 2024 chempedia.info