Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium salts, decompositions

Toxic intermediate products are produced during hydrolysis. Approximate half-life in water at 25°C is 1.3 min. Decomposition comes through slow change into quaternary ammonium salts. Decomposition point is below 94°C. [Pg.27]

Strontium carbonate is somewhat less soluble than barium carbonate otherwise its characteristics (slight solubility in ammonium salts, decomposition with acids) are similar to those of the latter. [Pg.281]

Figure C2.12.2. Fonnation of Br0nsted acid sites in zeolites. Aqueous exchange of cation M witli an ammonium salt yields tlie ammonium fonn of tlie zeolite. Upon tliennal decomposition ammonia is released and tire proton remains as charge-balancing species. Direct ion-exchange of M witli acidic solutions is feasible for high-silica zeolites. Figure C2.12.2. Fonnation of Br0nsted acid sites in zeolites. Aqueous exchange of cation M witli an ammonium salt yields tlie ammonium fonn of tlie zeolite. Upon tliennal decomposition ammonia is released and tire proton remains as charge-balancing species. Direct ion-exchange of M witli acidic solutions is feasible for high-silica zeolites.
The iodine compound is more stable and separates as so-called nitrogen trHodide monoammoniate [14014-86-9], NI NH, an insoluble brownish-black soHd, which decomposes when exposed to light in the presence of ammonia. In reactions of the halogens with the respective ammonium salts, however, the action is different. Chlorine replaces hydrogen and nitrogen chloride [10025-85-1], NCl, separates as oily, yeUow droplets capable of spontaneous explosive decomposition. [Pg.338]

Several commercial grades are available fine crystals of 99 to 100% purity, large crystals, pressed lumps, rods, and granular material. Double-Decomposition Methods. Double-decomposition processes all iavolve the reaction of sodium chloride, the cheapest chlorine source, with an ammonium salt. The latter may be suppHed directiy, or generated in situ by the reaction of ammonia and a supplementary iagredient. Ammonium chloride and a sodium salt are formed. The sodium salt is typically less soluble and is separated at higher temperatures ammonium chloride is recovered from the filtrate by cooling. [Pg.364]

Direct Meutra.liza.tion, Because of the avadabiHty of by-product ammonium salts, the double decomposition routes are usually more favorable economically for ammonium chloride manufacture. However, where surplus hydrogen chloride is available, the direct neutralisation process has been used (15)... [Pg.364]

Decomposition and Detonation Hazard. Ammonium nitrate is considered a very stable salt, even though ammonium salts of strong acids generally lose ammonia and become slightly acidic on storage. For ammonium nitrate, endothermic dissociation from lowering pH occurs above 169°C. [Pg.366]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

When potassium fluoride is combined with a variety of quaternary ammonium salts its reaction rate is accelerated and the overall yields of a vanety of halogen displacements are improved [57, p 112ff. Variables like catalyst type and moisture content of the alkali metal fluoride need to be optimized. In addition, the maximum yield is a function of two parallel reactions direct fluorination and catalyst decomposition due to its low thermal stability in the presence of fluoride ion [5,8, 59, 60] One example is trimethylsilyl fluoride, which can be prepared from the chloride by using either 18-crown-6 (Procedure 3, p 192) or Aliquot 336 in wet chlorobenzene, as illustrated in equation 35 [61],... [Pg.190]

Normally, persulfate (41) can only be used to initiate polymerization in aqueous or part aqueous (emulsion) media because it has poor solubility in most organic solvents and monomers. However, it has been reported that polymerizations in organic solvent may be initiated by crown ether complexes of potassium persulfate.234 237 Quaternary ammonium persulfates can also serve as useful initiators in organic media. 4 The rates of decomposition of both the crown ether complexes and the quaternary ammonium salts appear dramatically... [Pg.94]

Methods of EGA using selective sorption, condensation of effluent gases, infrared absorption and thermoparticulate analysis have been reviewed by Lodding [144]. The use of simple gas burette systems should not be forgotten and an Orsat gas analysis apparatus can provide useful measurements in studies of the decomposition of formates [169]. Problems have been encountered in the determination of water released Kiss et al. [170—172] have measured the formation of this compound from infrared analyses of the acetylene evolved following reaction of water with calcium carbide. Kinetic data may be obtained by wet methods ammonia, determined by titration after absorption in an aqueous solution, has been used to measure a—time values for the decomposition of ammonium salts in a fluidized bed [173],... [Pg.23]

It is convenient to classify here the decompositions of metal salts of the various oxyhalogen acids on the basis of the oxygen content of the anion, with subsections devoted to the metals of a particular sub-group of the Periodic Table. Again, consideration of the ammonium salts is deferred to Sect. 4. As noted elsewhere in this review, some reports are not explicit as to whether or not melting accompanies reaction thermal analysis studies can be valuable [843]. [Pg.185]

The grouping of ammonium salts in a separate section serves to emphasize the similarities of behaviour which are apparent in reactions yielding the volatile NH3 molecule, following removal of a proton from the NH4 cation. This property is not unique indeed, many cations are volatile and numerous salts leave no residue on completion of decomposition. Few kinetic investigations have, however, been reported for other compounds, in contrast to the extensive and detailed rate measurements which have been published for solid phase decompositions of many ammonium salts. Comparisons with the metal salts containing the same anion are sometimes productive, so that no single method of classification is altogether satisfactory. [Pg.195]

NH4)2S03 sublimes unaltered [946] but the monohydrate undergoes partial decomposition to H20, NH3 and (NH4)2S207. Decomposition of ammonium thiosulphate is inhibited by the addition of other ammonium salts, e.g. (NH4)2C03, and by briquetting [947]. [Pg.201]

Hajek et al. [173] have reported a detailed kinetic study of the solid phase decomposition of the ammonium salts of terephthalic and iso-phthalic acids in an inert-gas fluidized bed (373—473 K). Simultaneous release of both NH3 molecules occurred in the diammonium salts, without dehydration or amide formation. Reactant crystallites maintained their external shape and size during decomposition, the rate obeying the contracting volume equation [eqn. (7), n = 3]. For reaction at 423 K of material having particle sizes 0.25—0.40 mm, the rate coefficients for decompositions of diammonium terephthalate, monoammonium tere-phthalate and diammonium isophthalate were in the ratio 7.4 1.0 134 and values of E (in the same sequence) were 87,108 and 99 kJ mole-1. [Pg.203]

Ammonium salts of the zeolites differ from most of the compounds containing this cation discussed above, in that the anion is a stable network of A104 and Si04 tetrahedra with acid groups situated within the regular channels and pore structure. The removal of ammonia (and water) from such structures has been of interest owing to the catalytic activity of the decomposition product. It is believed [1006] that the first step in deammination is proton transfer (as in the decomposition of many other ammonium salts) from NH4 to the (Al, Si)04 network with —OH production. This reaction is 90% complete by 673 K [1007] and water is lost by condensation of the —OH groups (773—1173 K). The rate of ammonia evolution and the nature of the residual product depend to some extent on reactant disposition [1006,1008]. [Pg.208]


See other pages where Ammonium salts, decompositions is mentioned: [Pg.508]    [Pg.95]    [Pg.15]    [Pg.36]    [Pg.116]    [Pg.195]    [Pg.195]    [Pg.323]    [Pg.324]    [Pg.327]    [Pg.328]    [Pg.329]    [Pg.329]    [Pg.329]    [Pg.329]    [Pg.331]    [Pg.331]    [Pg.333]    [Pg.334]    [Pg.335]    [Pg.335]    [Pg.335]    [Pg.336]    [Pg.338]    [Pg.339]    [Pg.339]    [Pg.340]    [Pg.239]   


SEARCH



Ammonium phosphate salts, decomposition

Ammonium salt decompositions sublimation

Ammonium salts thermal decomposition

Ammonium salts with oxidizing anions decompositions

Ammonium salts, decompositions, nitrate

Ammonium salts, decompositions, nitrate formation

Ammonium salts, decompositions, proton

Ammonium salts, decompositions, proton transfer

Decomposition salts

Decomposition, quaternary ammonium salts

© 2024 chempedia.info