Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino groups resins

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

These products are useful for modification of alkyd resins (qv), preparation of paint vehicles, and copolymeri2ation with other monomers. Substitution on the amino group occurs readily, giving bases stronger than the parent amines. [Pg.17]

Amino Resins. Amino resins (qv) include both urea- and melamine—formaldehyde condensation products. They are thermosets prepared similarly by the reaction of the amino groups in urea [57-13-6] or melamine [108-78-1] with formaldehyde to form the corresponding methylol derivatives, which are soluble in water or ethanol. To form plywood, particle board, and other wood products for adhesive or bonding purposes, a Hquid resin is mixed with some acid catalyst and sprayed on the boards or granules, then cured and cross-linked under heat and pressure. [Pg.328]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

The use of an acidic solution of p-anisaldehyde in ethanol to detect aldehyde functionalities on polystyrene polymer supports has been reported (beads are treated with a freshly made solution of p-anisaldehyde (2.55 mL), ethanol (88 mL), sulfuric acid (9 mL), acetic acid (1 mL) and heated at 110°C for 4 min). The colour of the beads depends on the percentage of CHO content such that at 0% of CHO groups, the beads are colourless, -50% CHO content, the beads appear red and at 98% CHO the beads appear burgundy [Vdzquez and Albericio Tetrahedron Lett 42 6691 200]]. A different approach utilises 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as the visualizing agent for CHO groups. Resins containing aldehyde functionalities turn dark brown to purple after a 5 min reaction followed by a 10 minute air oxidation [Coumoyer et al. J Comb Chem 4 120 2002]. [Pg.76]

Other polyamides produced experimentally include polymers with active lateral groups (hydroxy, keto groups etc.), polymers with heteroatoms (sulphur and oxygen) in the polyamide-forming intermediates, polymers with tertiary amino groups in the main chain and polymers with unsaturation in the main chain. There does not, however, appear to have been any serious attempt to develop unsaturated polyamide analogues to the polyester laminating resins. [Pg.509]

If one amino group in o-phenylenediamine is converted to an amide group by formic acid, the intermediate benzimidazole is formed. This reaction, conducted with a wide range of reactants, produces resins (polybenzimidazoles) used as high-temperature adhesives for laminates in the aerospace industry. Heat insulation is made by including tiny bubbles of silica and all... [Pg.283]

Amine bound to a Wang-polystyrene resin 381 was acylated with 4-oxo-4Ff-pyrido[l,2-u]pyrazine-3-carboxylic acid in the presence of bromotrispyrrolidinophosphonium hexafluorophosphate and /-Pr2NEt in A-methylpyrrolidone (98MIP16). l-(4-Cyclohexyl-4-r / r-butylaminocarbo-nyl-l-piperidyl)-2-(4-fluorophenyl)ethylamine was acylated with perhydro-pyrido[l,2-u]pyrazine-3-carboxylic acid (01MIP19). An amino group of a macrocyclic compound attached to a solid support was acylated with... [Pg.312]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

An amino-formaldehyde resin or acetone-formaldehyde resin has the capability to harden in alkaline media, in contact with a cement solution with a pH of 11 to 12. The presence of sintered CaO provides the required conditions for hardening of the methylol groups of the formaldehyde resin with Ca + ions and a further simultaneous reaction of the methylol groups that formed hydrate compounds, resulting in an improved dispersion and plastification of the solution. [Pg.286]

Normally the reaction Is useful for the conversion of alkyl halides to primary amines without concomitant formation of secondary amines.29 Treatment of polymer 17 with hexamethylenetetramine in a mixture of ethanol/THF afforded an insoluble resin. Using diazabicyclooctane (DABCO), we demonstrated that the reaction could be limited to attack by a single nitrogen in a multifunctional amine, so we did not anticipate crosslinking via bis-quat salt formation. Hydrolysis of 2 with anhydrous HC1 in ethanol generated free amino groups as evidenced by a positive ninhydrin test, but quantitative hydrolysis could not be achieved and the product remained insoluble. One would have expected a simple bis-quat to hydrolyse and open the crosslinked structure. [Pg.19]

Functionalized supports with amino groups such as benzhydrylamine (BHA) 26 [32] and 4-methylbenzhydrylamine (MBHA) 3 [3] provided C-terminal amides upon HF cleavage (Fig. 2). Polyalkoxyaminobenzyl and alkoxydiphenylamino resins such as PAL (5-(4-aminomethyl-3,5-dime-... [Pg.190]

The synthesis of urea-formaldehyde resin takes place in two stages. In the first stage, urea is hydroxymethylolated by the addition of formaldehyde to the amino groups of urea (Figure 19.1). This reaction is in reality a series of reactions that lead to the formation of mono-, di-, and trimethy-lolureas. Tetramethylolurea does not appear to be produced, at least not in a detectable quantity. The addition of formaldehyde to urea takes place over the entire pH range, but the reaction rate is dependent on the pH. [Pg.760]

Amphiphilic resin supported ruthenium(II) complexes similar to those displayed in structure 1 were employed as recyclable catalysts for dimethylformamide production from supercritical C02 itself [96]. Tertiary phosphines were attached to crosslinked polystyrene-poly(ethyleneglycol) graft copolymers (PS-PEG resin) with amino groups to form an immobilized chelating phosphine. In this case recycling was not particularly effective as catalytic activity declined with each subsequent cycle, probably due to oxidation of the phosphines and metal leaching. [Pg.231]


See other pages where Amino groups resins is mentioned: [Pg.745]    [Pg.745]    [Pg.56]    [Pg.235]    [Pg.235]    [Pg.322]    [Pg.324]    [Pg.365]    [Pg.1496]    [Pg.73]    [Pg.76]    [Pg.76]    [Pg.620]    [Pg.815]    [Pg.102]    [Pg.150]    [Pg.197]    [Pg.187]    [Pg.188]    [Pg.1553]    [Pg.452]    [Pg.217]    [Pg.46]    [Pg.182]    [Pg.207]    [Pg.108]    [Pg.208]    [Pg.142]    [Pg.162]    [Pg.135]    [Pg.179]    [Pg.689]    [Pg.322]    [Pg.491]    [Pg.310]    [Pg.318]    [Pg.4]    [Pg.189]   
See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.162 , Pg.187 ]




SEARCH



Amino Groups on Resin

Amino resins

© 2024 chempedia.info