Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo compounds amines

Supplement 1952 2504-2665 Furfuracrylic acid, 300. Sulphonic acids, 667. Amines, 683. Hydroxylamines, 637. Hydrazines, 639. Azo compounds, 643. Diazo compounds, 661. Carbon-metal compounds, 663. [Pg.1123]

Supplement 1953 3242-3457 Hydroxy-carboxylic acids, 190 In i doxylic acid, 226. Carbonyl-carboxylic acids, 284. i Sulphonic acids, 386 Quinoline sul-phonic acid, 390. Amines, 419 2-Aminopyridine, 428. Amino-carboxylic acids, 541 Tryp- tophane, 545. Hydrazines, 563. Azo. compounds, 572. Diazo compounds, 590. ... [Pg.1124]

Azo Coupling. The coupling reaction between an aromatic diazo compound and a coupling component is the single most important synthetic route to azo dyes. Of the total dyes manufactured, about 60% are produced by this reaction. Other methods iaclude oxidative coupling, reaction of aryUiydraziae with quiaones, and oxidation of aromatic amines. These methods, however, have limited iadustrial appHcations. [Pg.426]

Fast Color Salts. In order to simplify the work of the dyer, diazonium salts, in the form of stable dry powders, were introduced under the name of fast color salts. When dissolved in water they react like ordinary diazo compounds. These diazonium salts, derived from amines, free from solubilizing groups, are prepared by the usual method and are salted out from the solutions as the sulfates, the metallic double salts, or the aromatic sulfonates. The isolated diazonium salt is sold in admixture with anhydrous salts such as sodium sulfate or magnesium sulfate. [Pg.445]

Sheremetev and co-workers employed diazo compounds of type 60, prepared from the corresponding amines in moderate yields as alternative excellent precursors for the preparation of side-chain-functionalized derivatives (Scheme 29). Several furazans bearing reactive groups or cyclopropyl or five-membered heterocyclic substituents have been prepared by standard procedures (99MI6). [Pg.82]

Instead of a diazonium salt, a diazo compound is obtained from reaction of a primary aliphatic amine 8 that has an electron-withdrawing substituent at the a-carbon (e.g. Z = COOR, CN, CHO, COR) as well as an a-hydrogen ... [Pg.88]

The fact that practically all aromatic amines are readily converted into diazo compounds contributed greatly to Griess s success. The original method (Griess, 1858) by which he diazotized picramic acid (1.1 see Scheme 1-1) consisted of passing nitrous gases, prepared by the reduction of nitric acid with starch or arsenious acid, into an alcoholic solution of the amine. [Pg.2]

Griess (1864a) had already observed that the diazo compounds obtained from primary aromatic amines in acid solution are converted by alkalis into salts of alkalis. The reaction is reversible. The compounds which Hantzsch (1894) termed sjw-diazotates exhibit apparently the same reactions as the diazonium ions into which they are instantaneously transformed by excess of acid. Clearly the reaction depends on an acid-base equilibrium. [Pg.3]

Aromatic diazonium compounds became industrially very important after Griess (1866a) discovered in 1861/62 the azo coupling reaction, by which the first azo dye was made by C. A. Martius in 1865 (see review by Smith, 1907). This is still the most important industrial reaction of diazo compounds. Hantzsch and Traumann (1888) discovered that a heteroaromatic amine, namely 2-aminothiazole, can also be diazotized. Heteroaromatic diazonium compounds were, however, only used for azo dyes much later, to a small extent in the 1930 s, but intensively since the 1950 s (see Zollinger, 1991, Ch. 7). [Pg.4]

Research into the mechanism of diazotization was based on Bamberger s supposition (1894 b) that the reaction corresponds to the formation of A-nitroso-A-alkyl-arylamines. The TV-nitrosation of secondary amines finishes at the nitrosoamine stage (because protolysis is not possible), but primary nitrosoamines are quickly transformed into diazo compounds in a moderately to strongly acidic medium. The process probably takes place by a prototropic rearrangement to the diazohydroxide, which is then attacked by a hydroxonium ion to yield the diazonium salt (Scheme 3-1 see also Sec. 3.4). [Pg.39]

The reaction of diazo compounds with amines is similar to 10-15. The acidity of amines is not great enough for the reaction to proceed without a catalyst, but BF3, which converts the amine to the F3B-NHR2 complex, enables the reaction to take place. Cuprous cyanide can also be used as a catalyst. The most common substrate is diazomethane, in which case this is a method for the methylation of amines. Ammonia has been used as the amine but, as in the case of 10-44, mixtures of primary, secondary, and tertiary amines are obtained. Primary aliphatic amines give mixtures of secondary and tertiary amines. Secondary amines give successful alkylation. Primary aromatic amines also give the reaction, but diaryl or arylalkyl-amines react very poorly. [Pg.504]

Amides can also be alkylated with diazo compounds, as in 10-49. Salts of sulfonamides (ArS02NH ) can be used to attack alkyl halides to prepare N-alkyl sulfonamides (ArS02NHR) that can be further alkylated to ArS02NRR. Hydrolysis of the latter is a good method for the preparation of secondary amines. Secondary amines can also be made by crown ether assisted alkylation of F3CCONHR (R = alkyl or aryl) and hydrolysis of the resulting F3CCONRR. ... [Pg.514]

If an aliphatic amino group is to a COOR, CN, CHO, COR, and so on, and has an a hydrogen, treatment with nitrous acid gives not a diazonium salt, but a diazo compound Such diazo compounds can also be prepared, often more conveniently, by treatment of the substrate with isoamyl nitrite and a small amount of acid. Certain heterocyclic amines also give diazo compounds rather than diazonium salts. ... [Pg.816]

Phosphoryl-substituted diazo compounds of general type 4 have recently been synthesized by amine diazotization, Bamford-Stevens reaction, and diazo group... [Pg.76]

Insertion of a carbene unit into the N—H bond of primary or secondary amines by copper salt catalyzed decomposition of diazo compounds has been known for a number of years14). The copper chelate promoted reaction of diazodiphenyl-methane 291) or 2-diazo-1,2-diphenyl-1-ethanone 292) with primary benzylamines or... [Pg.200]

Of the following amine-reactive and photoreactive crosslinkers, the overwhelming majority use an aryl azide group as the photosensitive functional group. Only a few use alternative photoreactive chemistries, particularly perfluorinated aryl azide, benzophenone, or diazo compounds. For general background information on photoreactive crosslinkers, see Das and Fox (1979), Kiehm and Ji (1977), Vanin and Ji (1981), and Brunner (1993). [Pg.305]

Figure 5.29 pNPDP reacts with amine-containing compounds by its p-nitrophenyl ester group to form amide bonds. After photoactivation of the diazo derivative with UV light, a Wolff rearrangement occurs to a highly reactive ketene intermediate. This group can couple to nucleophiles such as amines. [Pg.323]

The use of copper as a catalyst in carbenoid transfer has its roots in the Amdt-Eistert reaction, Eq. 1 (3). Although the original 1935 paper describes the Wolff rearrangement of a-diazo ketones to homologous carboxylic acids using silver, the authors mention that copper may be substituted in this reaction. In 1952, Yates (4) demonstrated that copper bronze induces insertion of diazo compounds into the X-H bond of alcohols, amines, and phenols without rearrangement, Eq. 2. Yates proposal of a distinct metal carbenoid intermediate formed the basis of the currently accepted mechanistic construct for the cyclopropanation reaction using diazo compounds. [Pg.4]

Shortly after Perkin had produced the first commercially successful dyestuff, a discovery was made which led to what is now the dominant chemical class of dyestuffs, the azo dyes. This development stemmed from the work of Peter Griess, who in 1858 passed nitrous fumes (which correspond to the formula N203) into a cold alcoholic solution of 2-aminO 4,6 dinitrophenol (picramic acid) and isolated a cationic product, the properties of which showed it to be a member of a new class of compounds [1]. Griess extended his investigations to other primary aromatic amines and showed his reaction to be generally applicable. He named the products diazo compounds and the reaction came to be known as the diazotisation reaction. This reaction can be represented most simply by Scheme 4.1, in which HX stands for a strong monobasic acid and Ar is any aromatic or heteroaromatic nucleus. [Pg.180]

Superior passive stabilised diazo compounds are afforded by the diazoamino compounds (triazenes) that arise by reaction of diazonium salts with a variety of secondary amines [114]. Typically, sarcosine (CH3NHCH2COOH), which gives products based on structure 4.114, as well as N-methyltaurine (CH3NHCH2CH2SO3H) and N methylaniline-4 Sulphonic acid,... [Pg.224]

Lead tetraacetate, oxidation of a hydrazone to a diazo compound, 50, 7 Lithio ethyl acetate, 53, 67 Lithium, reductions in amine solvents, 50, 89 Lithium aluminum hydride, reduction of exo-3,4-dichloro-bicyclo-[3.2.l]oct-2-ene to 3-chlorobicyclo[3.2.l]oct-2-ene, 51, 61... [Pg.131]

The simple primary amines of the aliphatic series, then, do not form diazo-compounds because the reaction which would le, d to their formation only occurs at a temperature at which they are destroyed. The reactivity of the NH2-group can, however, be increased by a neighbouring carbonyl group. Thus we come to the case of the esters of the a-amino-carboxylic acids and of the a-amino-ketones. The ethyl ester of glycine can be diazotised even in the cold the diazo-compound which does not decompose under these conditions undergoes stabilisation by elimination of water and change into ethyl diazoacetate ... [Pg.270]

The unexpected feature of the reaction of the primary aromatic amines with nitrous acid is that the diazo-compound, which is doubtless formed at low temperatures according to the scheme so far used, undergoes rearrangement by the acid present in the solution, and forms... [Pg.270]

In its simplest form this reaction, by means of which the extremely numerous technical azo-dyes are manufactured, consists in condensation of aromatic diazo-compounds with phenols or aromatic amines to form azo-compounds. From the labile diazo-system the very stable azo-complex is produced. The azo-dyes, therefore, are, without exception, derivatives of azobenzene or else of azonaphthalene, etc. [Pg.305]

Principally the same, but chemically simpler, sequence was used to prepare arylnitro anion-radicals from arylamines, in high yields. For instance, aqueous sodium nitrite solution was added to a mixture of ascorbic acid and sodium 3,5-dibromo-4-aminobenzenesulfonate in water. After addition of aqueous sodium hydroxide solution, the cation-radical of sodium 3,5-dibromo-4-nitro-benzenesulfonate was formed in the solution. The latter was completely characterized by its ESR spectrum. Double functions of the nitrite and ascorbic acid in the reaction should be underlined. Nitrite takes part in diazotization of the starting amine and trapping of the phenyl a-radical formed after one-electron reduction of the intermediary diazo compound. Ascorbic acid produces acidity to the reaction solution (needed for diazotization) and plays the role of a reductant when the medium becomes alkaline. The method described was proposed for ESR analytical determination of nitrite ions in water solutions (Lagercrantz 1998). [Pg.211]


See other pages where Diazo compounds amines is mentioned: [Pg.495]    [Pg.1916]    [Pg.495]    [Pg.1916]    [Pg.425]    [Pg.447]    [Pg.347]    [Pg.290]    [Pg.4]    [Pg.121]    [Pg.146]    [Pg.205]    [Pg.504]    [Pg.1654]    [Pg.137]    [Pg.207]    [Pg.207]    [Pg.302]    [Pg.173]    [Pg.53]    [Pg.212]    [Pg.629]    [Pg.109]   
See also in sourсe #XX -- [ Pg.17 , Pg.396 ]

See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Amination compounds

Amine compounds

Amines reaction with diazo compounds

Diazo compounds

Diazo compounds synthesis of amines

Diazo compounds, alkylation amines

© 2024 chempedia.info