Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines bromides

Ions that can be analyzed by electrochemical detection include cyanide, sulfide, hypochlorite, ascorbate, hydrazine, arsenite, phenols, aromatic amines, bromide, iodide, and thiosulfate [53], nitrite and nitrate [54.55], cobalt and iron [46], and others. The list may be extended through the technique of post-column derivatization to include many more ions such as carboxylic acids, halide ions, alkaline earth ions, and some transition metal ions [57,58). An example of an electrochemical reaction to detect ions is shown by Eq. 4.8. [Pg.72]

Simple alkyl and alkenyl ethers of pentaerythritol are produced on direct reaction of the polyol and the required alkyl or alkenyl chloride in the presence of quaternary alkyl amine bromide (44). Allyl chloride produces the pentaerythritol tetrallyl ether [1471-18-7],... [Pg.464]

Amide Bromine Hydroxide ion Amine Bromide ion Carbonate ion Water... [Pg.811]

The solution of 12.7 g of cerium (IV) ammonium nitrate in 10 ml of deionized water and the solution of 7 g of tetraethyl amine bromide in 10 ml of deionized water were mixed. The produced precipitate was dried at 80 °C in vacuum. [Pg.344]

As in organic chemistry where m values for bromides are rather lower than for chlorides, for example m — 0.92 for t-butyl bromide compared with m = 1.00 for t-butyl chloride, m values for cobalt(ra)-amine-bromide complexes are, at around 0.2, rather lower than for the analogous chlorides. Whereas in this work the effect of solvent structure on reaction rates has been used to gain further insight into reaction mechanisms, the opposite approach has also been used, in a study of aquation of tra/u-[Co(en)2Cl2]+ in alcohol-water mixtures, in which variation of rate with solvent composition has been used as a probe of solvent structure variation. Rates of aquation of both cis- and trans-[Co ea)2C have been determined in aqueous acetonitrile (0 < mole fraction MeCN < 0,104). For both complexes aquation rates decrease only slightly as the proportion of acetonitrile increases, with the cir-complex slightly more sensitive to solvent variation. The kinetic effects observed here are smaller than those observed in t-butyl alcohol-water solvent mixtures. ... [Pg.151]

Iron(III) chloride forms numerous addition compounds, especially with organic molecules which contain donor atoms, for example ethers, alcohols, aldehydes, ketones and amines. Anhydrous iron(III) chloride is soluble in, for example, ether, and can be extracted into this solvent from water the extraction is more effective in presence of chloride ion. Of other iron(III) halides, iron(III) bromide and iron(III) iodide decompose rather readily into the +2 halide and halogen. [Pg.394]

In the preparation of bromo compounds by the Sandmeyer reaction, the amine is generally diazotised in sulphuric acid solution (or in hydrobromic acid solution), and the resulting aryldiazonium sulphate (or bromide) is treated with a solution of cuprous bromide in excess of hydrobromic acid the addition... [Pg.592]

Now, contrary to popular opinions, this method need not be conducted in a sealed pipe bomb. Secondary amination by substitution is as much a reaction of opportunity as it is of brute force and heat. In fact, heating can tend to cause the reformation of safrole and isosafrole. So the simplest way to do this would be to use 500mL of ammonium hydroxide or alcoholic ammonia or, for those wishing to make MDMA or meth, 40% aqueous methylamine or alcoholic methylamine (to tell you the truth, methylamine is preferable in this method because it is more reactive that ammonia so yield will increase). This 500mL is placed in a flask and into it is poured a solution of 35g bromosafrole (30g phenylisopropyl-bromide) mixed with 50mL methanol. The flask is stoppered and stirred at room temperature for anywhere from 3 to 7 days. The chemist could also reflux the same mixture for 6-12 hours or she could throw the whole mix into a sealed pipe bomb (see How to Make section) and cook it for 5 hours in a 120-130°C oil bath. [Pg.157]

Note 2. This operation is necessary to remove the propargyl bromide. At higher temperatures bromoallene also reacts with the amine. [Pg.179]

The allyl bromides formed by method (A) contain 25% of the undesired (Z)-isomer. The selectivity of the palladium-catalyzed amination can be steered by the application of polymer-bound systems (see section 2.6.3 B. M. Trost, 1978),... [Pg.303]

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

Carbonylation of halides in the presence of primary and secondary amines at I atm affords amides[351j. The intramolecular carbonylation of an aryl bromide which has amino group affords a lactam and has been used for the synthesis of the isoquinoline alkaloid 498(352], The naturally occurring seven-membered lactam 499 (tomaymycin, neothramycin) is prepared by this method(353]. The a-methylene-d-lactam 500 is formed by the intramolecular carbonylation of 2-bromo-3-alkylamino-l-propene(354]. [Pg.196]

A Pd-cataly2ed reaction of amines with halides is expected, but actually little is known about the reaction. The CDE ring system of lavendamycin (805) has been constructed by the intramolecular reaction of aryl bromide with aniline derivative in 804, but 1.2 equiv, of Pd(Ph3P)4 is required[679]. [Pg.247]

Although It IS possible to prepare aryl chlorides and aryl bromides by electrophilic aromatic substitution it is often necessary to prepare these compounds from an aromatic amine The amine is converted to the corresponding diazonmm salt and then treated with copper(I) chloride or copper(I) bromide as appropriate... [Pg.948]

Mescaline a hallucinogenic amine obtained from the peyote cactus has been synthesized in two steps from 3 4 5 trimethoxybenzyl bromide The first step is nucleophilic substitution by sodium cyanide The second step is a lithium aluminum hydnde reduction What is the structure of mescaline" ... [Pg.968]

Many mercury compounds are labile and easily decomposed by light, heat, and reducing agents. In the presence of organic compounds of weak reducing activity, such as amines (qv), aldehydes (qv), and ketones (qv), compounds of lower oxidation state and mercury metal are often formed. Only a few mercury compounds, eg, mercuric bromide/77< 5 7-/7, mercurous chloride, mercuric s A ide[1344-48-5] and mercurous iodide [15385-57-6] are volatile and capable of purification by sublimation. This innate lack of stabiUty in mercury compounds makes the recovery of mercury from various wastes that accumulate with the production of compounds of economic and commercial importance relatively easy (see Recycling). [Pg.112]

Linear alpha-olefins are the source of the largest volume of ahphatic amine oxides. The olefin reacts with hydrogen bromide in the presence of peroxide catalyst, to yield primary alkyl bromide, which then reacts with dimethylamine to yield the corresponding alkyl dimethyl amine. Fatty alcohols and fatty acids are also used to produce amine oxides (Fig. 1). [Pg.191]

Adamantylamine is prepared from the corresponding alcohol or bromide by bridgehead cation generation in the presence of acetonitrile (49). Selective hydrolysis of the resultant acetamide to the rigid cycloahphatic amine by acid or base is difficult. [Pg.210]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Deall lation. Chloroformates such as vinyl chloroformates (40) are used to dealkylate tertiary amines. Chloroformates are superior to the typical Von Braun reagent, cyanogen bromide, because of increased selectivity producing cleaner products. Other chloroformates such as aHyl, methyl, phenyl, and trichloroethyl have also been used in dealkylation reactions. Although the dealkylation reaction using chloroformates is mostiy carried out on tertiary amines, dealkylation of oxygen or sulfur centers, ie, ethers or thioethers, can also be achieved. a-Chloroethyl chloroformate [50893-53-3] (ACE-Cl) (41,42) is superior to all previously used chloroformates for the dealkylation reaction. ACE-Cl has the advantage that the conditions requked for ACE... [Pg.39]


See other pages where Amines bromides is mentioned: [Pg.508]    [Pg.250]    [Pg.334]    [Pg.355]    [Pg.807]    [Pg.811]    [Pg.807]    [Pg.508]    [Pg.250]    [Pg.334]    [Pg.355]    [Pg.807]    [Pg.811]    [Pg.807]    [Pg.351]    [Pg.571]    [Pg.1058]    [Pg.128]    [Pg.228]    [Pg.230]    [Pg.139]    [Pg.126]    [Pg.199]    [Pg.250]    [Pg.930]    [Pg.351]    [Pg.486]    [Pg.297]    [Pg.327]    [Pg.390]    [Pg.239]    [Pg.337]    [Pg.158]    [Pg.99]   
See also in sourсe #XX -- [ Pg.758 , Pg.759 , Pg.760 , Pg.761 , Pg.762 , Pg.763 , Pg.764 , Pg.765 ]




SEARCH



Allylzinc bromide homoallyl amines

Amination aryl bromides

Amination of Aryl Bromides and Chlorides

Amines bromo acid bromides

Amines oxidations, copper bromide

Amines reaction with cyanogen bromide

Amines, copper®) bromide

Bromide benzyl, reaction with amines

Bromide potassium, reaction amines

Bromides acid, reaction with amines

Cyanogen bromide, reactions with tertiary amines

Ethyl, amine bromide

Tertiary amines bromide

© 2024 chempedia.info