Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary amines bromide

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Deall lation. Chloroformates such as vinyl chloroformates (40) are used to dealkylate tertiary amines. Chloroformates are superior to the typical Von Braun reagent, cyanogen bromide, because of increased selectivity producing cleaner products. Other chloroformates such as aHyl, methyl, phenyl, and trichloroethyl have also been used in dealkylation reactions. Although the dealkylation reaction using chloroformates is mostiy carried out on tertiary amines, dealkylation of oxygen or sulfur centers, ie, ethers or thioethers, can also be achieved. a-Chloroethyl chloroformate [50893-53-3] (ACE-Cl) (41,42) is superior to all previously used chloroformates for the dealkylation reaction. ACE-Cl has the advantage that the conditions requked for ACE... [Pg.39]

An interesting appetite suppressant very distantly related to hexahydroamphetamines is somanta-dine (24). The reported synthesis starts with conversion of 1-adamantanecarboxylic acid (20) via the usual steps to the ester, reduction to the alcohol, transformation to the bromide (21), conversion of the latter to a Grignard reagent with magnesium metal, and transformation to tertiary alcohol 22 by reaction with acetone. Displacement to the fomiamide (23) and hydrolysis to the tertiary amine (24) completes the preparation of somantadine [6]. [Pg.4]

But in the presence simultaneously of a nickel catalyst and of a tertiary amine, the aryl bromide is activated and the bromhydric acid fixed, in such a way to give a very good yield (80 %) in aryl ether in regard to the moderate temperature... [Pg.247]

The mechanism consists of two successive nucleophilic substitutions, with the tertiary amine as the first nucleophile and the liberated bromide ion as the second ... [Pg.523]

Cleavage of tertiary amines with cyanogen bromide (von Braun) Dehydration of disubstituted ureas... [Pg.1663]

The alkyl halide (ethyl bromide in the above equation) can react further with the primary amine produced to give a secondary amine and with that to form a tertiary amine and finally a quaternary ammonium salt. Quaternary ammonium hydroxides are very strong bases like sodium hydroxide. Tetramethylammonium hydroxide is a very important chemical used in the manufacture of semiconductors and other electronic industry products. [Pg.71]

Notes on the preparation of secondary alkylarylamines. The preparation of -propyl-, ijopropyl- and -butyl-anilines can be conveniently carried out by heating the alkyl bromide with an excess (2-5-4mols) of aniline for 6-12 hours. The tendency for the alkyl halide to yield the corresponding tertiary amine is thus repressed and the product consists almost entirely of the secondary amine and the excess of primary amine combined with the hydrogen bromide liberated in the reaction. The separation of the primary and secondary amines is easily accomplished by the addition of an excess of per cent, zinc chloride solution aniline and its homologues form sparingly soluble additive compounds of the type B ZnCl whereas the alkylanilines do not react with sine chloride in the presence of water. The excess of primary amine can be readily recovered by decomposing the zincichloride with sodium hydroxide solution followed by steam distillation or solvent extraction. The yield of secondary amine is about 70 per cent, of the theoretical. [Pg.571]

In general, cyclization can be expected in compounds having the potential for formation of five- or six-membered rings. In addition to the more typical bromination reagents, such as those listed in Table 4.2, the combination of trimethylsilyl bromide, a tertiary amine, and DMSO can effect bromolactonization. [Pg.311]

The preparation of ketenes has been discussed by Hanford and Sauer in Organic Reactions Dimethylketene has been prepared by the treatment of a-bromoisobutyryl bromide with zinc,3 and by the pyrolysis of isobutyrylphthalimide,4 dimethylmalonic anhydride,6 or a-carbomethoxy-a,j3-dimethyl- -butyrolactone. Dimethylketene dimer has been prepared by heating isobutyryl chloride with a tertiary amine. Pyrolysis of the dimer yields dimethylketene.7... [Pg.76]

Aromatic Ketones The DIOP-Rh [116] and DBPP-Rh [117] complexes, in conjunction with a tertiary amine, have been employed in the asymmetric hydrogenation of acetophenone, albeit with moderate enantioselectivity (80 and 82% respectively Tab. 1.10). The asymmetric hydrogenation of aromatic ketones was significantly improved by using the Me-PennPhos-Rh complex, with which enantioselectivities of up to 96% ee were achieved [36]. Interestingly, the additives 2,6-lutidine and potassium bromide were again found to be crucial for optimum selectivity, although their specific role has not been determined. [Pg.22]

Cyanoethylation, 5, 2 Cyanogen bromide, reactions with tertiary amines, 7, 4... [Pg.587]

A wide range of aluminum alkoxides can easily be synthesized by the reaction of alcohols with triethylaluminum. These alcohols can even be substituted by compatible functional groups such as bromides, olefins, and tertiary amines (Fig. 10) [20, 21]. An alternative route towards aluminum alkoxides relies on the reaction of the alcohols with aluminum isopropoxide in toluene. Isopropanol (iPr) formed during this reaction is withdrawn by the distillation of the azeotrope made up of toluene and isopropanol [20, 21]. [Pg.182]

Reactions with thiono esters, iodides, bromides, and selenides proceed efficiently with dimethyl phosphite or with hypophosphorous acid in the presence of a tertiary amine and AIBN.221... [Pg.659]

Vecuronium bromide (Norcuron) is chemically identical to pancuronium except for a tertiary amine in place of a quaternary nitrogen. However, some of the drug will exist as the bisquatemary compound, depending on body pH. Vecuronium has a moderate onset of action (2.4 minutes) and a duration of effect of about 50 minutes. Like pancuronium, it does not block ganglia or vagal neuroeffector junctions, does not release histamine, and is eliminated by urinary excretion. [Pg.343]

Preparation of Propargylk Tertiary Amines from Propargyl Bromide and Aliphatic or Cycloaliphatic Secondary Amines... [Pg.272]


See other pages where Tertiary amines bromide is mentioned: [Pg.571]    [Pg.139]    [Pg.126]    [Pg.199]    [Pg.297]    [Pg.327]    [Pg.99]    [Pg.242]    [Pg.46]    [Pg.322]    [Pg.247]    [Pg.133]    [Pg.485]    [Pg.523]    [Pg.788]    [Pg.247]    [Pg.176]    [Pg.50]    [Pg.17]    [Pg.151]    [Pg.198]    [Pg.339]    [Pg.234]    [Pg.25]    [Pg.853]    [Pg.1095]    [Pg.315]    [Pg.433]    [Pg.76]    [Pg.1040]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Amines bromides

Amines tertiary

Cyanogen bromide, reactions with tertiary amines

© 2024 chempedia.info