Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Americium radioactivity

Mclnroy et al. 1985). Americium radioactivity can be measured in the teeth of rats, where it accumulates in the dental pulp of developing teeth and eventually is incorporated into the mineralized dentin (Hammerstrom and Nilsson 1970). [Pg.113]

Each of the elements has a number of isotopes (2,4), all radioactive and some of which can be obtained in isotopicaHy pure form. More than 200 in number and mosdy synthetic in origin, they are produced by neutron or charged-particle induced transmutations (2,4). The known radioactive isotopes are distributed among the 15 elements approximately as follows actinium and thorium, 25 each protactinium, 20 uranium, neptunium, plutonium, americium, curium, californium, einsteinium, and fermium, 15 each herkelium, mendelevium, nobehum, and lawrencium, 10 each. There is frequently a need for values to be assigned for the atomic weights of the actinide elements. Any precise experimental work would require a value for the isotope or isotopic mixture being used, but where there is a purely formal demand for atomic weights, mass numbers that are chosen on the basis of half-life and availabiUty have customarily been used. A Hst of these is provided in Table 1. [Pg.212]

Most chemical iavestigations with plutonium to date have been performed with Pu, but the isotopes Pu and Pu (produced by iatensive neutron irradiation of plutonium) are more suitable for such work because of their longer half-Hves and consequendy lower specific activities. Much work on the chemical properties of americium has been carried out with Am, which is also difficult to handle because of its relatively high specific alpha radioactivity, about 7 x 10 alpha particles/(mg-min). The isotope Am has a specific alpha activity about twenty times less than Am and is thus a more attractive isotope for chemical iavestigations. Much of the earher work with curium used the isotopes and Cm, but the heavier isotopes... [Pg.216]

AH of the 15 plutonium isotopes Hsted in Table 3 are synthetic and radioactive (see Radioisotopes). The lighter isotopes decay mainly by K-electron capture, thereby forming neptunium isotopes. With the exception of mass numbers 237 [15411-93-5] 241 [14119-32-5] and 243, the nine intermediate isotopes, ie, 236—244, are transformed into uranium isotopes by a-decay. The heaviest plutonium isotopes tend to undergo P-decay, thereby forming americium. Detailed reviews of the nuclear properties have been pubUshed (18). [Pg.192]

Most smoke alarms (Figure 19.1, p. 517) use a radioactive species, typically americium-241. A tiny amount of this isotope is placed in a small ionization chamber decay of Am-241 ionizes air molecules within the chamber. Under the influence of a potential applied by a battery, these ions move across the chamber, producing an electric current. If smoke particles get into... [Pg.516]

When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are normally exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance or by skin contact. However, since americium is radioactive, you can also be exposed to its radiation if you are near it. [Pg.17]

Americium (pronounced,, am-8- ris(h)-e-8m) is a man-made, radioactive, actinide element with an atomic number of 95. It was discovered in 1945. Actinides are the 15 elements, all of whose isotopes are radioactive starting with actinium (atomic number 89), and extending to lawrencium (atomic number 103). When not combined with other elements, americium is a silvery metal. Americium has no naturally occurring or stable isotopes. There are two important isotopes of... [Pg.17]

Quantities of americium, as well as other radioactive elements, are measured in units of mass (grams) or radioactivity (curies or becquerels). The becquerel (Bq) is a new international unit and... [Pg.18]

Most physicians do not test for americium in their offices, but they can collect samples and send them to special laboratories. Since americium is radioactive, it is normally measured by its radiation emissions. These emissions are used to tell the amount of americium (in curies or Becquerels) and the radiation dose it gives to your body (in Sieverts or rem). Radiation detectors measure the radiation that is released from objects or materials, including the whole body. If... [Pg.24]

Information on the excretion of americium after dermal exposure in humans or animals is extremely limited. Some qualitative information is available from an accidental exposure in which a worker received facial wounds from projectile debris and nitric acid during an explosion of a vessel containing 241 Am (McMurray 1983). The subject also inhaled 241Am released to the air as dust and nitric acid aerosols, which was evident from external chest measurements of internal radioactivity thus, excretion estimates reflect combined inhalation, dermal, and wound penetration exposures (Palmer et al. 1983). Measurements of cumulative fecal and urinary excretion of241 Am during the first years after the accident, and periodic measurements made from day 10 to 11 years post accident indicated a fecal urine excretion ratio of approximately 0.2-0.3, although the ratio was approximately 1 on day 3 post accident (Breitenstein and... [Pg.71]

The ICRP (1994b, 1995) developed a Human Respiratory Tract Model for Radiological Protection, which contains respiratory tract deposition and clearance compartmental models for inhalation exposure that may be applied to particulate aerosols of americium compounds. The ICRP (1986, 1989) has a biokinetic model for human oral exposure that applies to americium. The National Council on Radiation Protection and Measurement (NCRP) has also developed a respiratory tract model for inhaled radionuclides (NCRP 1997). At this time, the NCRP recommends the use of the ICRP model for calculating exposures for radiation workers and the general public. Readers interested in this topic are referred to NCRP Report No. 125 Deposition, Retention and Dosimetry of Inhaled Radioactive Substances (NCRP 1997). In the appendix to the report, NCRP provides the animal testing clearance data and equations fitting the data that supported the development of the human mode for americium. [Pg.76]

Americium toxicity results primarily from the damage done by the alpha particle emitted during radioactive decay. This alpha particle has very limited penetration in tissue, and hence, the cellular damage (including damage to genomic material) occurs only in the immediate vicinity of the sequestered americium. [Pg.107]

Although chromosomal aberrations have been reported in lymphocytes following exposure to 241Am (Bauchinger et al. 1997 Kelly and Dagle 1974), and these observations are consistent with the effects of exposure to radiation, these effects are not specific to radioactive americium or to ionizing radiation in general. [Pg.114]

No data were located regarding reduction of the toxic effects of radioactive americium through interfering with mechanisms of action. [Pg.116]

Americium is released into surface water primarily from plutonium production reactors, nuclear fuel reprocessing facilities, or in nuclear accidents. It may also be released from radioactive waste storage facilities. Since 241Pu decays into 241 Am,241 Am is also released as a result of 241Pu releases. Water sampling data were used to estimate effluent releases from the SRS from the plant s start up in... [Pg.144]

Biotic Transport Biotic transport can be defined as the actions of plants and animals that result in the transport of a radioactive material or other substance from a waste site to locations where it can enter pathways that may result in exposure to humans. Small mammals are ubiquitous and inhabit areas containing radioactive contamination or radioactive waste sites. Mammals inhabiting these areas may become contaminated with americium by consuming contaminated soil or plants and disturb americium-contaminated soil through their burrowing and excavating activities. These animals may therefore affect the distribution of americium within the waste site or transport americium to previously uncontaminated areas. In addition, small mammals may be consumed by animals higher in the food chain such as hawks and coyotes, which would add to the dispersal of americium from disposal areas. However, results of... [Pg.158]

Americium isotopes are transformed by radioactive decay. However, the half-lives of the principal americium isotopes, 241Am and 243Am, are very long, 432 and 7,370 years, respectively, and there is only a small amount of transformation over a human lifetime. 241Am is formed by the decay of 241Pu (half-life 14.4 years) and this can lead to a significant transformation of that isotope to 241 Am in humans, especially for 241Pu that is fixed in the bone. [Pg.166]


See other pages where Americium radioactivity is mentioned: [Pg.113]    [Pg.113]    [Pg.443]    [Pg.206]    [Pg.1260]    [Pg.18]    [Pg.18]    [Pg.20]    [Pg.23]    [Pg.27]    [Pg.28]    [Pg.32]    [Pg.33]    [Pg.40]    [Pg.46]    [Pg.47]    [Pg.60]    [Pg.67]    [Pg.69]    [Pg.72]    [Pg.76]    [Pg.118]    [Pg.120]    [Pg.121]    [Pg.123]    [Pg.124]    [Pg.126]    [Pg.135]    [Pg.140]    [Pg.144]    [Pg.146]    [Pg.157]    [Pg.161]    [Pg.164]    [Pg.167]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Americium

Americium radioactive decay

Radioactive americium

Radioactive americium

Radioactivity Nickel, Americium, and Tritium

© 2024 chempedia.info