Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum oxide composites

J.K.R. Weber et al., Glass formation and polyamorphism in rare-earth oxide-aluminum oxide compositions. J. Am. Ceram. Soc. 83(8), 1868-1872 (2000). [Pg.70]

Microstructurc. Crystal size, porosity, and impurity phases play a major role in fixing the fracture characteristics and toughness of an abrasive grain. As an example, rapidly cooled fused aluminum oxide has a microcrystalline stmcture promoting toughness for heavy-duty grinding appHcations, whereas the same composition cooled slowly has a macrocrystalline stmcture more suitable for medium-duty grinding. [Pg.10]

A typical slag (specific gravity 3.6) contains complex siUcates of iron, calcium, 2iac, magnesium, and aluminum oxides. The quantity of fluxes (compounds added to lower the melting poiat) added depends on the feed composition, and is calculated to ensure a fluid slag at the operating temperature. [Pg.36]

The coating composition is a combination of hydrated chromium and aluminum oxides and hydroxides, eg, Cr202 XH2O, x — 1, 2. [Pg.224]

The activated aluminas comprise a senes of nonequilibrium forms of partially hydroxylated aluminum oxide [1344-28-1], AI2O2. The chemical composition can be represented by Al20 2 ranges from about 0 to 0.8. They are porous soHds made by thermal treatment of aluminum hydroxide... [Pg.153]

Pulpstones. Improvements have been made in the composition and speed of the grinding wheel, in methods of feeding the wood and pressing it against the stone, in control of power to the stones, and in the size and capacity of the units. The first pulpstones were manufactured from quarried sandstone, but have been replaced by carbide and alumina embedded in a softer ceramic matrix, in which the harder grit particles project from the surface of the wheel (see Abrasives). The abrasive segments ate made up of three basic manufactured abrasive siUcon carbide, aluminum oxide, or a modified aluminum oxide. Synthetic stones have the mechanical strength to operate at peripheral surface speeds of about 1200—1400 m /min (3900 to 4600 ft/min) under conditions that consume 0.37—3.7 MJ/s (500—5000 hp) pet stone. [Pg.258]

The choice of selected raw materials is very wide, but they must provide calcium oxide (lime), iron oxide [1309-37-1/, siHca, and aluminum oxide (alumina). Examples of the calcereous (calcium oxide) sources are calcium carbonate minerals (aragonite [14791-73-2] calcite [13397-26-7] limestone [1317-65-3] or mad), seasheUs, or shale. Examples of argillaceous (siHca and alumina) sources are clays, fly ash, mad, shale, and sand. The iron oxide commonly comes from iron ore, clays, or mill scale. Some raw matedals supply more than one ingredient, and the mixture of raw matedals is a function of their chemical composition, as deterrnined by cost and availabiHty. [Pg.322]

The reinforcing fibers are usually CVD SiC or modified aluminum oxide. A common matrix material is SiC deposited by chemical-vapor infiltration (CVI) (see Ch. 5). The CVD reaction is based on the decomposition of methyl-trichlorosilane at 1200°C. Densities approaching 90% are reported.b l Another common matrix material is Si3N4 which is deposited by isothermal CVI using the reaction of ammonia and silicon tetrachloride in hydrogen at 1100-1300°C and a total pressure of 5 torr.l" " ] The energy of fracture of such a composite is considerably higher than that of unreinforced hot-pressed silicon nitride. [Pg.481]

We begin with the structure of a noble metal catalyst. The emphasis is on the preparation of rhodium on aluminum oxide and the nature of the metal-support interaction. Next we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here we are concerned with the composition and structure of the catalytically active... [Pg.246]

Many barium aluminosilicate-based compositions will eventually react with the chromium oxide or aluminum oxide scales on the metal interconnect or metal edge rails to form barium chromate or a celsian phase at the interface [6], This can cause a mechanical weakness that is easily delaminated. Also, compositions that contain boron can react over time with water (steam) to produce B2(OH)2 or B(OH)3 gas. This can decompose the glass and greatly limit the lifetime of the seal. Thus many of the new investigations have emphasized low or no boron glass compositions. [Pg.217]

Konno, M., M. Shindo, S. Sugawara and S. Saito. 1988. A composite palladium and porous aluminum oxide membrane for hydrogen gas separation, J. Membr, Sci. 37 193-97. [Pg.115]

Surface acidity and catalytic activity develop only after heat treatment of a coprecipitated mixture of amorphous silicon and aluminum oxides. Similar catalysts can be prepared by acid treatment of clay minerals, e.g., bentonite. The acidity is much stronger with silica-alumina than with either of the pure oxides. Maximum catalytic activity is usually observed after activation at 500-600°. At higher temperatures, the catalytic activity decreases again but can be restored by rehydration, as was shown by Holm et al. (347). The maximum of activity was repeatedly reported for compositions containing 20-40% of alumina. [Pg.259]

When aluminized AP composite propellant burns, a high mole fraction of aluminum oxide is produced as a combustion product, which generates visible smoke. If smoke has to be avoided, e. g. for miUtary purposes or a fireworks display, aluminum particles cannot be added as a component of an AP composite propellant In addition, a large amount of white smoke is produced even when non-aluminized AP composite propellants bum. This is because the combustion product HCl acts as a nucleus for moisture in the atmosphere and relatively large-sized water drops are formed as a fog or mist This physical process only occurs when the relative humidity in the atmosphere is above about 60%. If, however, the atmospheric temperature is below 260 K, white smoke is again formed because of the condensation of water vapor with HCl produced as combustion products. If the HCl smoke generated by AP combustion cannot be tolerated, the propellant should be replaced with a double-base propellant or the AP particles should be replaced with another... [Pg.96]

The presence of incandescent solid or liquid particles in the flame will adversely affect color quality. The resulting "black body" emission of white light will enhance overall emission intensity, but the color quality will be lessened. A "washed out" color will be perceived by viewers. The use of magnesium or aluminum metal in color compositions will yield high flame temperatures and high overall intensity, but broad emission from incandescent magnesium oxide or aluminum oxide products may lower color purity. [Pg.192]

The A1 AI2O3 composite grown at low temperatures (450-500 °C) and low pressure (10 -10 mbar) consists of aluminum particles (diameters ranging from 1-50 nm depending on reaction time), which are embedded in an almost amorphous AI2O3 matrix. The sizes of the particles seem to follow a fractal distribution with a fractal exponent of 2.4 [24] which we have already found for other metal/metal-oxide composites grown by similar CVD processes [22,29]. The amorphous aliuninum oxide is transformed to the crystalhne 7-AI2O3 at temperatures aroimd 550-600 °C. [Pg.93]


See other pages where Aluminum oxide composites is mentioned: [Pg.433]    [Pg.433]    [Pg.14]    [Pg.16]    [Pg.129]    [Pg.493]    [Pg.109]    [Pg.444]    [Pg.1028]    [Pg.81]    [Pg.711]    [Pg.450]    [Pg.458]    [Pg.471]    [Pg.91]    [Pg.122]    [Pg.148]    [Pg.270]    [Pg.96]    [Pg.342]    [Pg.7]    [Pg.149]    [Pg.4]    [Pg.210]    [Pg.213]    [Pg.88]    [Pg.354]    [Pg.394]    [Pg.126]    [Pg.629]    [Pg.241]    [Pg.11]    [Pg.84]    [Pg.35]    [Pg.81]   


SEARCH



Aluminum oxidation

Aluminum oxide

Aluminum oxidized

Composition of Anodic Aluminum Oxides

© 2024 chempedia.info