Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum carbonyl compound reductions

Sodium borohydride and lithium aluminum hydride react with carbonyl compounds in much the same way that Grignard reagents do except that they function as hydride donors rather than as carbanion sources Figure 15 2 outlines the general mechanism for the sodium borohydride reduction of an aldehyde or ketone (R2C=0) Two points are especially important about this process... [Pg.629]

High yields of optically active cyanohydrins have been prepared from hydrogen cyanide and carbonyl compounds using an enzyme as catalyst. Reduction of these optically active cyanohydrins with lithium aluminum hydride in ether affords the corresponding substituted, optically active ethanolamine (5) (see Alkanolamines). [Pg.411]

The chemical reduction of enamines by hydride again depends upon the prior generation of an imonium salt (111,225). Thus an equivalent of acid, such as perchloric acid, must be added to the enamine in reductions with lithium aluminum hydride. Studies of the steric course (537) of lithium aluminum hydride reductions of imonium salts indicate less stereoselectivity in comparison with the analogous carbonyl compounds, where an equatorial alcohol usually predominates in the reduction products of six-membered ring ketones. [Pg.428]

Since double bonds may be considered as masked carbonyl, carboxyl or hydroxymethylene groups, depending on whether oxidative or reductive methods are applied after cleavage of the double bond, the addition products from (E)-2 and carbonyl compounds can be further transformed into a variety of chiral compounds. Thus, performing a second bromine/lithium exchange on compound 4, and subsequent protonation, afforded the olefin 5. Ozonolysis followed by reduction with lithium aluminum hydride gave (S)-l-phenyl-l,2-ethanediol in >98% ee. [Pg.143]

Metal-induced reductive dimerization of carbonyl compounds is a useful synthetic method for the formation of vicinally functionalized carbon-carbon bonds. For stoichiometric reductive dimerizations, low-valent metals such as aluminum amalgam, titanium, vanadium, zinc, and samarium have been employed. Alternatively, ternary systems consisting of catalytic amounts of a metal salt or metal complex, a chlorosilane, and a stoichiometric co-reductant provide a catalytic method for the formation of pinacols based on reversible redox couples.2 The homocoupling of aldehydes is effected by vanadium or titanium catalysts in the presence of Me3SiCl and Zn or A1 to give the 1,2-diol derivatives high selectivity for the /-isomer is observed in the case of secondary aliphatic or aromatic aldehydes. [Pg.15]

Reduction of Carbonyl Compounds with Aluminum Alkoxides... [Pg.201]

The pioneering work of Posner, on the reduction of carbonyl compounds with isopropyl alcohol and alumina [116], has now been adapted to an expeditious solvent-free reduction procedure that utilizes aluminum alkoxides under microwave irradiation conditions (Scheme 6.37) [117]. [Pg.201]

Carbonyl compounds addition to, 73 659 a-alkylation of, 73 658s reduction with alumina—sodium borohydride, 76 572-573 reduction with aluminum alkoxides, 76 572... [Pg.144]

The reaction of complex hydrides with carbonyl compounds can be exemplified by the reduction of an aldehyde with lithium aluminum hydride. The reduction is assumed to involve a hydride transfer from a nucleophile -tetrahydroaluminate ion onto the carbonyl carbon as a place of the lowest electron density. The alkoxide ion thus generated complexes the remaining aluminum hydride and forms an alkoxytrihydroaluminate ion. This intermediate reacts with a second molecule of the aldehyde and forms a dialkoxy-dihydroaluminate ion which reacts with the third molecule of the aldehyde and forms a trialkoxyhydroaluminate ion. Finally the fourth molecule of the aldehyde converts the aluminate to the ultimate stage of tetraalkoxyaluminate ion that on contact with water liberates four molecules of an alcohol, aluminum hydroxide and lithium hydroxide. Four molecules of water are needed to hydrolyze the tetraalkoxyaluminate. The individual intermediates really exist and can also be prepared by a reaction of lithium aluminum hydride... [Pg.17]

In recent years, inorganic hydrides such as lithium aluminum hydride, LiAlH4, and sodium borohydride, NaBH4, have become extremely important as reducing agents of carbonyl compounds. These reagents have considerable utility, especially with sensitive and expensive carbonyl compounds. The reduction of cyclobutanone to cyclobutanol is a good example, and you will... [Pg.705]

The reduction of aldehydes and ketones is carried out very easily. The carbonyl compound and aluminum isopropoxide, prepared from aluminum and isopropyl alcohol, are heated in boiling isopropyl alcohol solution with provision for slow distillation until no more acetone is formed. The general equation may be represented as follows. [Pg.180]

The reduction of methyl 2-siloxycyclopropanecarboxylates can also be started at the ester function when lithium aluminum hydride in ether is the reagent. The resulting alcohols undergo the wellknown cyclopropylcarbinyl/homoallyl rearrangement upon treatment with acid to provide P/y-unsaturated carbonyl compounds 117. These are synthesized isomerically pure and in good yields in a number of cases, if the two-phase-system 2N hydrochloric acid/pentane is employed 78). Otherwise the very easy isomerization to the conjugated a,p-unsaturated compounds 118 occurs to some extend, which can intentionally be completed by base catalysis. [Pg.102]

The aluminum chloride-catalyzed rearrangement of the multiring bisphenylhydrazone (147) gave two [l,2-c 4,5-c ]benzopyrazoles <82TL4493>. Functionalized benzenes of the type (148), available by reduction of many heterocycles, react with carbonyl compounds to construct a variety of benzodiheterocycles of the general type (149). [Pg.870]

Reduction of Carbonyl Compounds by Nickel-Aluminum Alloya... [Pg.427]

Catalytic hydrogenation114-116 also leads to carbonyl compounds, acids being formed in a side reaction.110 Reduction of the ozonides with lithium aluminum hydride117 119 and with sodium borohydride119 yields alcohols. [Pg.195]

The new metallic hydrides are excellent reducing agents for carbonyl compounds. These hydrides now include lithium aluminum hydride, lithium borohydride, and sodium borohydride. The last reagent may be used in either aqueous or methanolic solutions. It does not reduce esters, acids, or nitriles and, for this reason, is superior for certain selective reductions. Other groups which are unaffected by this reagent include a,/S-double bonds and hydroxyl, methoxyl, nitro, and dimethylamino groups. ... [Pg.526]

Chiral Ligand of L1A1H4 for the Enantioselective Reduction of Alkyl Phenyl Ketones. Optically active alcohols are important synthetic intermediates. There are two major chemical methods for synthesizing optically active alcohols from carbonyl compounds. One is asymmetric (enantioselective) reduction of ketones. The other is asymmetric (enantioselective) alkylation of aldehydes. Extensive attempts have been reported to modify Lithium Aluminum Hydride with chiral ligands in order to achieve enantioselective reduction of ketones. However, most of the chiral ligands used for the modification of LiAlHq are unidentate or bidentate, such as alcohol, phenol, amino alcohol, or amine derivatives. [Pg.40]


See other pages where Aluminum carbonyl compound reductions is mentioned: [Pg.108]    [Pg.162]    [Pg.367]    [Pg.396]    [Pg.65]    [Pg.585]    [Pg.50]    [Pg.272]    [Pg.262]    [Pg.39]    [Pg.43]    [Pg.757]    [Pg.90]    [Pg.434]    [Pg.469]    [Pg.757]    [Pg.112]    [Pg.180]    [Pg.193]    [Pg.120]    [Pg.147]    [Pg.186]    [Pg.236]    [Pg.1020]    [Pg.571]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Aluminum carbonyl reduction

Aluminum reduction

Carbonyl compounds reduction

Carbonyl compounds, reductive

Carbonyl reduction

Lithium aluminum hydride reduction, alcohols from, with carbonyl compounds

Reduction carbonylation

Reduction of Carbonyl Compounds with Aluminum Alkoxides

© 2024 chempedia.info