Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminothermics

Niobium pentoxide also is reduced to metal commercially by the aluminothermic process. The finely ground powder is mixed with atomized aluminum and an accelerator compound which gives extra heat during reaction, then is ignited. The reaction is completed quickly and, after cooling, the slag is broken loose to free the metal derby which is purified by electron-beam melting. [Pg.23]

Examination of the metallic product (regulus) of such aluminothermically produced vanadium metal reveals the presence of oxide phases in the metal matrix. This suggests that there is a decreasing solubiHty for aluminum and oxygen below the melting point. To date, no purification processes have been developed that take advantage of the purification potential of this phenomenon. [Pg.383]

The vanadium alloy is purified and consoHdated by one of two procedures, as shown in the flow diagram of the entire aluminothermic reduction process presented in Figure 1. In one procedure, the brittle alloy is cmshed and heated in a vacuum at 1790°C to sublime most of the aluminum, oxygen, and other impurities. The aluminum faciHtates removal of the oxygen, which is the feature that makes this process superior to the calcium process. Further purification and consoHdation of the metal is accompHshed by electron-beam melting of pressed compacts of the vanadium sponge. [Pg.383]

Fig. 1. Flow diagram for aluminothermic process showiag alternative methods of aluminum removal from alloy regulus. Fig. 1. Flow diagram for aluminothermic process showiag alternative methods of aluminum removal from alloy regulus.
Electrolysis. Although in Western countries the aluminothermic process has now completely replaced the electrolytic method, electrolysis is beheved to be the method used for calcium production in the People s RepubHc of China and the Commonwealth of Independent States (CIS). This process likely involves the production of a calcium—copper alloy, which is then redistilled to give calcium metal. [Pg.400]

Aluminothermal Method. Calcium metal is produced by high temperature vacuum reduction of calcium oxide in the aluminothermal process. This process, in which aluminum [7429-90-5] metal serves as the reducing agent, was commercialized in the 1940s. The reactions, which are thermodynamically unfavorable at temperatures below 2000°C, have been summarized as ... [Pg.400]

The production of metals which form very stable oxides by tire aluminothermic process, such as manganese, clrromium and vanadium is carried out with reactants at room temperature which react to provide enough heat to raise the temperature of the products to high temperatures at which the whole system is liquid. The metal phase which is produced can therefore separate from the liquid slag which is formed. The production of clrromium serves as a useful... [Pg.342]

Odier metals having vety stable oxides can be reduced by the aluminothermic reaction to produce useful feno-alloys. Niobium oxide, NbO, can be reduced to form a feiTO-alloy by the inclusion of iron in die reacting iiiixmre as haematite or magnetite, depending on the niobium content which is requhed in the product. [Pg.344]

The following reactions illustrate the aluminothermic and magnesiothermic processes ... [Pg.268]

Even though the standard free energy change associated with an aluminothermic reduction reaction... [Pg.387]

One of the important differences between calciothermic and aluminothermic reduction of oxides concerns the interaction between the reduced metal and the reductant. Calcium does not form stable solid solutions or alloys with the reduced metals calcium contamination in the metal is, therefore, relatively small. Aluminum, on the other hand, readily forms solid solutions with the reduced metals, and the product generally contains appreciable quantities of residual aluminum. This is not a serious problem because in many cases either a certain aluminum content is desired in the reduced metal or the residual aluminum can be effectively removed in post-reduction purification operations. The extent of the contamination of a reduced metal with the reductant can be related to factors such as the reaction temperature, the standard free energy change associated with the reaction, and the slag composition. Let the following generalized reaction be considered ... [Pg.388]

Aluminothermic reduction is one among the few pyrometallurgical processes where the actual process closely follows the route theoretically predicted from thermodynamic data. This characteristic, coupled with the simplicity associated with the whole process, makes it well suited for demonstration experiments. The reduction of magnetite by aluminum is a suitable example in this context. [Pg.389]

The reduction of manganese oxides by aluminum has been used for the production of manganese metal. The process is also a classic example to illustrate thermal energy management in a typical aluminothermic reduction process. [Pg.390]

The production of chromium metal by the aluminothermic reduction of chromium sesquioxide can be represented by the equation ... [Pg.391]

The total heat requirement is thus around 599.98 kj, which is about 548.81 kj more than the heat available from the reaction. This calculation, however, does not take into account the inevitable heat losses due to the nonadiabatic conditions in the reactor. An estimate of these heat losses can be made by considering the industrial practice for aluminothermic chromium metal production. The charge is preheated to about 500 °C before loading into the aluminothermic crucible. This operation adds about 96.65 kj (i.e., 48.9 cal deg-1 475) of heat to the system. It, therefore, appears that around 41.84 kj (96.65 kj - 54.81 kj) of heat is lost due to radiation and convection for every mole of chromium sesquioxide reduced to the metal by the aluminothermic process. [Pg.392]

In the aluminothermic reduction of niobium oxides, the products must reach a temperature of at least about 2470 °C, and hence the heat required to raise niobium metal and alumina from room temperature to this temperature must be estimated. Using the values of the heat capacities and the heats of fusion for niobium and alumina, the following figures can be obtained ... [Pg.392]

The reactor used for the aluminothermic reduction of niobium pentoxide is shown schematically in Figure 4.17 (A). It is a steel pipe, lined on the inside with alumina and provided with a pipe cap. The charge, consisting of stoichiometric amounts of niobium pentoxide and aluminum powder, is blended and loaded in the lined pipe, and covered with alumina. The cap is closed and the reaction initiated by placing the loaded bomb in a gas-fired furnace, preheated to 800 °C, and by raising the temperature of the furnace to 1100 °C. [Pg.393]

Instead of a closed-bomb reactor, an open reactor (shown in Figure 4.17 B) has also been used for this aluminothermic reduction. The mild steel reactor is lined on the inside with calcined magnesia. An arrangement is made to initiate the reaction in the center of the... [Pg.394]

Figure 4.17 B Schematic of the reactor for open aluminothermic reduction of niobium pentoxide. Figure 4.17 B Schematic of the reactor for open aluminothermic reduction of niobium pentoxide.
Vanadium forms numerous oxides, the most important of which are vanadium monoxide, vanadium sesquioxide, vanadium dioxide and vanadium pentoxide. In the earlier examples (e.g., oxides of chromium and of niobium) the enthalpy values for the aluminothermic reduction of each of the oxides was given for the purpose of illustration. Normally, the consideration can be restricted to only those oxides which are readily obtained and which can be handled freely without any special or cumbersome precautions. In the case of vanadium for example, it is sufficient to consider the reduction of the sesquioxide (V203) and the pentoxide (V2Os). The pertinent reactions are ... [Pg.395]

In practice, the production of vanadium by aluminothermic reduction is also governed by some other considerations. The reduction has to be carried out under an inert atmosphere (helium or argon) to avoid nitrogen pick-up from the air by vanadium metal. The composition of the oxide-aluminum charge has to be so chosen that the thermit (metal obtained by aluminothermic reduction) contains between 11 and 19% aluminum. This is necessary for the subsequent refining step in the vanadium metal production flowsheet. Pure vanadium pentoxide and pure aluminum are used as the starting materials, and the reduction is conducted in a closed steel bomb as shown in Figure 4.17 (C). [Pg.396]

Figure 4.17 C Schematic of the closed-bomb reactor for aluminothermic reduction of vanadium pentoxide. Figure 4.17 C Schematic of the closed-bomb reactor for aluminothermic reduction of vanadium pentoxide.
Ferrovanadium stands as a major industrially used form of vanadium. Similarly, it is in the form of ferroniobium that the bulk of niobium is used industrially. Aluminothermic reduction is an elegant metallurgical process for the production of these ferroalloys in their practically carbon-free forms. [Pg.399]

The preparation of ferrovanadium by this route is carried out batchwise in refractory-lined open reactors, with vanadium pentoxide, aluminum powder, iron scrap and lime or fluorspar constituting the charge. The reactions once initiated, proceed briskly to completion. The reaction heat is sufficient to melt the ferrovanadium and the alumina-lime/fluor-spar slag, which readily separate due to density difference. The aluminothermic ferroalloy product contains practically no carbon. [Pg.399]


See other pages where Aluminothermics is mentioned: [Pg.326]    [Pg.383]    [Pg.145]    [Pg.346]    [Pg.1003]    [Pg.1003]    [Pg.20]    [Pg.415]    [Pg.379]    [Pg.387]    [Pg.387]    [Pg.388]    [Pg.388]    [Pg.389]    [Pg.390]    [Pg.390]    [Pg.393]    [Pg.394]    [Pg.395]    [Pg.396]    [Pg.397]    [Pg.397]    [Pg.398]    [Pg.399]   


SEARCH



Aluminothermic method

Aluminothermic process

Chromium aluminothermic process

Niobium aluminothermic reduction

Preparation of Iron by Aluminothermic Process

Preparation of Vanadium by the Aluminothermic Process

Reactors aluminothermic reduction

Reduction, aluminothermic

Vanadium aluminothermic reduction

© 2024 chempedia.info