Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic substitution carbon nucleophiles

Takeuchi s initial report on iridium-catalyzed allylic substitution demonstrated that the allylation of carbon nucleophiles forms branched, racemic substitution products. Chiral catalysts were quickly developed that led to methods to prepare the... [Pg.205]

Asymmetric allylation of carbon nucleophiles has been carried out extensively using Pd catalysts coordinated by various chiral phosphine ligands and even with nitrogen ligands, and ee > 90% has been achieved in several cases. However, in most cases, a high ee has been achieved only with the 1,3-diaryl-substituted allylic compounds 217, and the synthetic usefulness of the reaction is limited, Therefore, only references are cited[24,133],... [Pg.447]

The transition metal-catalyzed allylation of carbon nucleophiles was a widely used method until Grieco and Pearson discovered LPDE-mediated allylic substitutions in 1992. Grieco investigated substitution reactions of cyclic allyl alcohols with silyl ketene acetals such as Si-1 by use of LPDE solution [95]. The concentration of LPDE seems to be important. For example, the use of 2.0 M LPDE resulted in formation of silyl ether 88 with 86 and 87 in the ratio 2 6.4 1. In contrast, 3.0 m LPDE afforded an excellent yield (90 %) of 86 and 87 (5.8 1), and the less hindered side of the allylic unit is alkylated regioselectively. It is of interest to note that this chemistry is also applicable to cyclopropyl carbinol 89 (Sch. 44). [Pg.39]

ALLYLIC SUBSTITUTIONS BY NUCLEOPHILES OTHER THAN CARBON [752,910,1062]... [Pg.628]

The Pd-catalysed allylation of carbon nucleophiles with allylic compounds via Jt-aUylpaUadium complexes is called the Tsuji-Trost reaction [32]. Typically, an allyl acetate or carbonate (54) reacts with a Pd-catalyst resulting in displacement of the leaving group to generate a Jt-allylpalladium complex (55) that can undergo substitution by a nucleophile (56) (Scheme 4.14). In 1965, Tsuji reported the reaction of ti-aUylpaUadium chloride with nucleophiles such as enamines and anions of diethyl malonate and ethyl acetoacetate. A catalytic variant was soon reported thereafter in the synthesis of allylic amines [33]. In 1973, Trost described the alkylation of alkyl-substituted 7i-aUylpalladium complexes with methyl methylsulfonylacetate... [Pg.67]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

The allyl-substituted cyclopentadiene 122 was prepared by the reaction of cyclopentadiene anion with allylic acetates[83], Allyl chloride reacts with carbon nucleophiles without Pd catalyst, but sometimes Pd catalyst accelerates the reaction of allylic chlorides and gives higher selectivity. As an example, allylation of the anion of 6,6-dimethylfulvene 123 with allyl chloride proceeded regioselectively at the methyl group, yielding 124[84]. The uncatalyzed reaction was not selective. [Pg.308]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

Recently, the scope of the allylic substitution has been extended to sulfinate salts 84 to obtain allylic sulfones 85. Due to solubility problems of both nucleophile 84 and carbonate leaving group, a polar solvent mixture of DMF and 2-methoxyethanol had to be employed, which limits the reaction to the use of a phosphine ligand. Thus, various aryl sulfinates 84 and functionalized carbonates 81 could be converted to the corresponding allylic sulfones 85 with good to excellent yields and regioselectivites and complete retention of stereochemistry (eq. 2 in Scheme 20) [65]. [Pg.198]

Aregioselective catalytic system for the allylic substitution of non-symmetric allyl carbonates by carbon and nitrogen nucleophiles based on [ Bu N][Fe(NO)(CO)3] and PPhj was developed (Scheme 2.26). The high regioselectivity was ascribed to the slow a-allyl- to Jt-aUyl-isomerisation relative to the rate of substitution. However, the use of high excess of the pro-nucleophile and DMF solvent are drawbacks on the atom efficiency and functional group tolerance of the system. [Pg.52]

Allyl carbonate esters are also useful hydroxy-protecting groups and are introduced using allyl chloroformate. A number of Pd-based catalysts for allylic deprotection have been developed.209 They are based on a catalytic cycle in which Pd° reacts by oxidative addition and activates the allylic bond to nucleophilic substitution. Various nucleophiles are effective, including dimedone,210 pentane-2,4-dione,211 and amines.212... [Pg.266]

An important variant for transition metal-catalyzed carbon-nitrogen bond formation is allylic substitution (for reviews, see1,la lh). Nucleophilic attack by an amine on an 7r-allyl intermediate, generated from either an allylic alcohol derivative,2 16,16a 16f an alkenyloxirane,17-19,19a-19d an alkenylaziridine19,19a 19d, or a propargyl alcohol derivative,21,21a 21d gives an allylic amine derivative. [Pg.695]

Examination of the reactivity of acyclic (diene)Fe(CO)3 complexes indicates that this nucleophilic addition is reversible. The reaction of (C4H6)Fe(CO)3 with strong carbon nucleophiles, followed by protonation, gives olefinic products 195 and 196 (Scheme 49)187. The ratio of 195 and 196 depends upon the reaction temperature and time. Thus, for short reaction time and low temperature (0.5 h, —78 °C) the product from attack at C2 (i.e. 195) predominates while at higher temperature and longer reaction time (2 h, 0 °C) the product from attack at Cl (i.e. 196) predominates. This selectivity is rationalized by kinetically controlled attack at the more electron-poor carbon (C2) at low temperature. Nucleophilic attack is reversible and, under conditions where an equilibrium is established, the thermodynamically more stable (allyl)Fe(CO)3" is favored. The regioselectivity for nucleophilic attack on substituted (diene)Fe(CO)3 complexes has been reported187. The... [Pg.951]

To explain the stereochemistry of the allylic substitution reaction, a simple stereoelectronic model based on frontier molecular orbital considerations has been proposed (155, Fig. 6.2). Organocopper reagents, unlike C-nucleophiles, possess filled d-orbitals (d configuration), which can interact both with the 7t -(C=C) orbital at the y-carbon and to a minor extent with the o- -(C-X) orbital, as depicted... [Pg.210]

A wide range of carbon, nitrogen, and oxygen nucleophiles react with allylic esters in the presence of iridium catalysts to form branched allylic substitution products. The bulk of the recent literature on iridium-catalyzed allylic substitution has focused on catalysts derived from [Ir(COD)Cl]2 and phosphoramidite ligands. These complexes catalyze the formation of enantiomerically enriched allylic amines, allylic ethers, and (3-branched y-8 unsaturated carbonyl compounds. The latest generation and most commonly used of these catalysts (Scheme 1) consists of a cyclometalated iridium-phosphoramidite core chelated by 1,5-cyclooctadiene. A fifth coordination site is occupied in catalyst precursors by an additional -phosphoramidite or ethylene. The phosphoramidite that is used to generate the metalacyclic core typically contains one BlNOLate and one bis-arylethylamino group on phosphorus. [Pg.170]

The first examples of iridium-catalyzed allylic substitution [1] occurred between stabilized carbon nucleophiles and both alkyl- and aryl-substituted allylic alcohol derivatives with exceptional selectivity for the branched substitution product. [Pg.174]

The scope of allylic electrophiles that react with amines was shown to encompass electron-neutral and electron-rich ciimamyl methyl carbonates, as well as furan-2-yl and alkyl-substituted allylic methyl carbonates. An ort/io-substituted cinnamyl carbonate was found to react with lower enantioselectivity, a trend that has been observed in later studies of reactions with other nucleophiles. The electron-poor p-nitrocinnamyl carbonate also reacted, but with reduced enantioselectivity. Allylic amination of dienyl carbonates also occur in some cases with high selectivity for formation of the product with the amino group at the y-position over the s-position of the pentadienyl unit [66]. Arylamines did not react with allylic carbonates under these conditions. However, they have been shown to react in the presence of the metalacyclic iridium-phosphoramidite catalysts that are discussed in Sect. 4. [Pg.182]

Iridium-Catalyzed Allylic Substitution with Carbon Nucleophiles... [Pg.188]

As previously discussed, activation of the iridium-phosphoramidite catalyst before addition of the reagents allows less basic nitrogen nucleophiles to be used in iridium-catalyzed allylic substitution reactions [70, 88]. Arylamines, which do not react with allylic carbonates in the presence of the combination of LI and [Ir(COD)Cl]2 as catalyst, form allylic amination products in excellent yields and selectivities when catalyzed by complex la generated in sim (Scheme 15). The scope of the reactions of aromatic amines is broad. Electron-rich and electron-neutral aromatic amines react with allylic carbonates to form allylic amines in high yields and excellent regio- and enantioselectivities as do hindered orlAo-substituted aromatic amines. Electron-poor aromatic amines require higher catalyst loadings, and the products from reactions of these substrates are formed with lower yields and selectivities. [Pg.191]


See other pages where Allylic substitution carbon nucleophiles is mentioned: [Pg.304]    [Pg.159]    [Pg.458]    [Pg.300]    [Pg.310]    [Pg.321]    [Pg.224]    [Pg.130]    [Pg.7]    [Pg.56]    [Pg.24]    [Pg.1336]    [Pg.70]    [Pg.398]    [Pg.697]    [Pg.176]    [Pg.955]    [Pg.274]    [Pg.286]    [Pg.169]    [Pg.170]    [Pg.172]    [Pg.173]    [Pg.187]    [Pg.193]   
See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.847 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.847 ]




SEARCH



Allyl carbon centers, nucleophilic substitution

Allyl carbonate

Allyl carbonates 3£)-substituted

Allyl carbonates allylation

Allyl carbonates substitutions

Allylation carbon nucleophiles

Allylation nucleophiles

Allylic carbon

Allylic carbon, nucleophilic

Allylic substitution

Allylic substitution nucleophiles

Carbon allyl

Carbon allylation

Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles, substitution

Nucleophilic allylic substitution

Nucleophilic substitution at an allylic carbon

Nucleophilic substitution carbon

© 2024 chempedia.info