Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl halides, oxidative addition

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

Lithiated indoles can be alkylated with primary or allylic halides and they react with aldehydes and ketones by addition to give hydroxyalkyl derivatives. Table 10.1 gives some examples of such reactions. Entry 13 is an example of a reaction with ethylene oxide which introduces a 2-(2-hydroxyethyl) substituent. Entries 14 and 15 illustrate cases of addition to aromatic ketones in which dehydration occurs during the course of the reaction. It is likely that this process occurs through intramolecular transfer of the phenylsulfonyl group. [Pg.95]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

Chlorination of the Cp Ru(amidinate) complexes is readily achieved by treatment with CHCI3, while oxidative addition of allylic halides results in formation of cationic Ti-allyl ruthenium(IV) species (Scheme 243). °... [Pg.279]

There are few reports of oxidative addition to zerovalent transition metals under mild conditions three reports involving group 10 elements have appeared. Fischer and Burger reported the preparation of aTT -allylpalladium complex by the reaction of palladium sponge with allyl bromide(63). The Grignard-type addition of allyl halides to aldehydes has been carried out by reacting allylic halides with cobalt or nickel metal prepared by reduction of cobalt or nickel halides with manganese/iron alloy-thiourea(64). [Pg.231]

The development of the Grignard-type addition to carbonyl compounds mediated by transition metals would be of interest as the compatibility with a variety of functionality would be expected under the reaction conditions employed. One example has been reported on the addition of allyl halides to aldehydes in the presence of cobalt or nickel metal however, yields were low (up to 22%). Benzylic nickel halides prepared in situ by the oxidative addition of benzyl halides to metallic nickel were found to add to benzil and give the corresponding 3-hydroxyketones in high yields(46). The reaction appears to be quite general and will tolerate a wide range of functionality. [Pg.233]

Oxidative addition occurs readily with allylic halides. Donor ligands (tertiary phosphines, bipyridyl, halide ions) and anionic complexes are required for activation of aromatic and vinyl halides (4, 70). Certain aliphatic halides are also reactive. The intermediate species R—Ni—X... [Pg.208]

The reaction proceeds through ligand exchange and a subsequent P-elimination akin to the oxidative addition of Cp2Zr to allylic ethers [58], In this way, allyltitanium compounds can be obtained from readily available allylic alcohol derivatives and inexpensive Ti(OiPr)4. The method allows the preparation of functionalized allyltitaniums bearing functional groups such as ester or halide (Scheme 13.28). [Pg.467]

Typical procedure for the preparation of allyltitanium derivatives from allyl halides via oxidative addition, and in situ reaction with aldehydes [57,59]... [Pg.472]

Palladium(II) is one of the most important transition metals in catalytic oxidations of allenes [1], Scheme 17.1 shows the most common reactions. Transformations involving oxidative addition of palladium(O) to aryl and vinyl halides do not afford an oxidized product and are discussed in previous chapters. The mechanistically very similar reactions, initiated by nucleophilic attack by bromide ion on a (jt-allene)pal-ladium(II) complex, do afford products with higher oxidation state and are discussed below. These reactions proceed via a fairly stable (jt-allyl)palladium intermediate. Mechanistically, the reaction involves three discrete steps (1) generation of the jt-allyl complex from allene, halide ion and palladium(II) [2] (2) occasional isomeriza-... [Pg.973]

The reaction of an allene with an aryl- or vinylpalladium(II) species is a widely used way of forming a Jt-allyl complex. Subsequent nucleophilic attack on this intermediate gives the product and palladium(O) (Scheme 17.1). Oxidative addition of palladium ) to an aryl or vinyl halide closes the catalytic cycle that does not involve an overall oxidation. a-Allenyl acids 27, however, react with palladium(II) instead of with palladium(O) to afford cr-vinylpalladium(II) intermediates 28 (Scheme 17.12). These cr-complexes than react with either an allenyl ketone [11] or with another alle-nyl acid [12] to form 4-(3 -furanyl)butenolides 30 or -dibutenolides 32, respectively. [Pg.981]

The reaction starts with an oxidative addition of an allylic compound to palladium(O) and a Tt-allyl-palladium complex forms. Carboxylates, allyl halides, etc. can be used. In practice one often starts with divalent palladium sources, which require in situ reduction. This reduction can take place in several ways, it may involve the alkene, the nucleophile, or the phosphine ligand added. One can start from zerovalent palladium complexes, but very stable palladium(O) complexes may also require an incubation period. Good starting materials are the 7t-allyl-palladium intermediates ... [Pg.273]

Whereas allyl, benzyl and propargyl electrophiles are among the most reactive towards Pd, Ni and other transition metals, ordinary alkyl halides and related alkyl electrophiles that are not /3, -unsaturated are among the least reactive carbon electrophiles with respect to oxidative addition to Pd or Ni. Most of the alkyl derivatives are also associated... [Pg.524]

Finally, the hybridization of the carbon atom also has a marked effect on its willingness to attach to the transition metal. Allyl or benzyl halides undergo oxidative addition faster than aromatic or vinyl halides. The least reactive are alkyl halides which require the use of nickel(O)9 complexes or highly active catalyst systems.10 If we start from an optically active substrate, then the oxidative addition usually proceeds in a stereoselective manner. [Pg.6]

The oxidative addition is quite general with alkyl, allyl, benzyl, vinyl, and aryl halides as well as with acyl halides to afford the palladium (II) complex VII. The frans-bis( triphenylphosphine )alkylpalladium halides can also be carbonylated in an insertion reaction to give the corresponding acyl complexes, the stereochemistry of which (17, 18) proceeds with retention of configuration at the carbon bonded to palladium. The acyl complex also can be formed from the addition of the corresponding acid halide to tetrakis (triphenylphosphine) palladium (0). [Pg.108]


See other pages where Allyl halides, oxidative addition is mentioned: [Pg.6]    [Pg.209]    [Pg.238]    [Pg.934]    [Pg.109]    [Pg.187]    [Pg.195]    [Pg.684]    [Pg.398]    [Pg.322]    [Pg.204]    [Pg.11]    [Pg.460]    [Pg.217]    [Pg.109]    [Pg.109]    [Pg.130]    [Pg.10]    [Pg.14]    [Pg.10]    [Pg.126]    [Pg.392]    [Pg.473]    [Pg.182]    [Pg.183]    [Pg.184]    [Pg.60]    [Pg.140]    [Pg.614]   
See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Allyl addition

Allyl halides

Allyl oxide

Allylic addition

Allylic halides

Allylic oxidation

Halide additives

Halide oxidation

Halides allylation

Halides oxidative addition

Halides oxides

Oxidative addition allylation

Oxidative addition of allyl halides

© 2024 chempedia.info