Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl acetates production

The final result of interest in the exchange studies is the inhibition of ally lie ester exchange (Equation 4) by the allylic esters themselves. Both the starting allylic ester, as well as the allylic acetate product, readily formed monomeric 7r-complex according to Equation 19. Since... [Pg.47]

A gas-phase process has also been developed for the conversion of propene to allyl acetate. This process involves the reaction of propylene with HO Ac and O2 over heterogeneous Pd (Pd-Cu-K0Ac/Si02) at 100-300"C. The allyl acetate product is then hydrolyzed to afford allyl alcohol (Eqs. (8.2) and (8.3)) [11]. Pd-catalyzed acetoxylation of propylene affords propenyl and isopropenyl acetate as the major products [12]. Showa Denko K. K. had used this route to produce allyl alcohol since 1985 [13]. This process contributes significantly to allyl alcohol production ( 70 000 t/year) and has the potential to be the main route in the future [13]. [Pg.118]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

With higher alkenes, three kinds of products, namely alkenyl acetates, allylic acetates and dioxygenated products are obtained[142]. The reaction of propylene gives two propenyl acetates (119 and 120) and allyl acetate (121) by the nucleophilic substitution and allylic oxidation. The chemoselective formation of allyl acetate takes place by the gas-phase reaction with the supported Pd(II) and Cu(II) catalyst. Allyl acetate (121) is produced commercially by this method[143]. Methallyl acetate (122) and 2-methylene-1,3-diacetoxypropane (123) are obtained in good yields by the gas-phase oxidation of isobutylene with the supported Pd catalyst[144]. [Pg.38]

Indene derivatives 264a and 264b are formed by the intramolecular reaction of 3-methyl-3-phenyl-l-butene (263a) and 3,3,3-triphenylpropylene (263b) [237]. Two phenyl groups are introduced into the /3-substituted -methylstyrene 265 to form the /3-substituted /3-diphenylmethylstyrene 267 via 266 in one step[238]. Allyl acetate reacts with benzene to give 3-phenylcinnamaldehyde (269) by acyl—O bond fission. The primary product 268 was obtained in a trace amount[239]. [Pg.56]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

The reaction of phenylzinc reagent proceeds with opposite stereochemistry, namely by retention of configuration at the final step via transmetallation. Both the (S)-( )- and (i )-(Z)-allylic acetates 4 and 9 afford the (/ )-( )-phe-nylated product II by overall inversion[23]. [Pg.294]

Based on the above-mentioned stereochemistry of the allylation reactions, nucleophiles have been classified into Nu (overall retention group) and Nu (overall inversion group) by the following experiments with the cyclic exo- and ent/n-acetales 12 and 13[25], No Pd-catalyzed reaction takes place with the exo-allylic acetate 12, because attack of Pd(0) from the rear side to form Tr-allyl-palladium is sterically difficult. On the other hand, smooth 7r-allylpalladium complex formation should take place with the endo-sWyWc acetate 13. The Nu -type nucleophiles must attack the 7r-allylic ligand from the endo side 14, namely tram to the exo-oriented Pd, but this is difficult. On the other hand, the attack of the Nu -type nucleophiles is directed to the Pd. and subsequent reductive elimination affords the exo products 15. Thus the allylation reaction of 13 takes place with the Nu nucleophiles (PhZnCl, formate, indenide anion) and no reaction with Nu nucleophiles (malonate. secondary amines, LiP(S)Ph2, cyclopentadienide anion). [Pg.294]

Aldehydes take part in the cycloaddition to give the methylenetetrahydrofuran 178 by the co-catalysis of Pd and Sn compounds[115]. A similar product 180 is obtained by the reaction of the allyl acetate 179, which has a tributyltin group instead of a TMS group, with aldehydesfl 16]. The pyrrolidine derivative 182 is formed by the addition of the tosylimine 181 to 154[117]. [Pg.314]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

The decarboxylation of allyl /3-keto carboxylates generates 7r-allylpalladium enolates. Aldol condensation and Michael addition are typical reactions for metal enolates. Actually Pd enolates undergo intramolecular aldol condensation and Michael addition. When an aldehyde group is present in the allyl fi-keto ester 738, intramolecular aldol condensation takes place yielding the cyclic aldol 739 as a main product[463]. At the same time, the diketone 740 is formed as a minor product by /3-eIimination. This is Pd-catalyzed aldol condensation under neutral conditions. The reaction proceeds even in the presence of water, showing that the Pd enolate is not decomposed with water. The spiro-aldol 742 is obtained from 741. Allyl acetates with other EWGs such as allyl malonate, cyanoacetate 743, and sulfonylacetate undergo similar aldol-type cycliza-tions[464]. [Pg.392]

Allyl Acetate. Industrial production of aHyl acetate started only rather recendy. Nevertheless, among the aHyl compounds, its production is second to that of aHyl chloride. It is produced mostiy for manufacturing aHyl alcohol and its manufacture by acetoxylation of propylene has been described previously. The aHyl acetate obtained may be separated and purified by distillation. [Pg.77]

The production of 1,4-butanediol (1,4-BDO) from propylene via the carbonylation of allyl acetate is noted in Chapter 8. 1,4-Butanediol from maleic anhydride is discussed later in this chapter. An alternative route for the diol is through the acetoxylation of butadiene with acetic acid followed by hydrogenation and hydrolysis. [Pg.258]

A solution of 1.5 mol equiv of butyllithium in hexane is added to 1.5 mol equiv of a 1 M solution of hexabutylditin in THF at 0 C under nitrogen, and the mixture is stirred for 20 min. The solution is cooled to — 78 °C and a solution of 1.5 mol equiv of diethylaluminum chloride in toluene is added. After stirring for 1 h at — 78 °C, a solution of 0.05 mol equiv of [tetrakis(triphenyl)phosphine]palladium(0) in THF is added followed by a solution of the allyl acetate in THF. The mixture is warmed to r.t., and stirred until the allyl acetate has reacted (TLC). The solution is cooled to 0°C, and an excess of aq ammonia slowly added. After an aqueous workup, the products arc isolated and purified by flash chromatography on silica gel using 1 % triethylamine in the solvent to avoid acid-induced loss of stannane. [Pg.362]

Reduction of iV-(3-bromopropyl) imines gives a bromo-amine in situ, which cyclizes to the aziridine. Five-membered ring amines (pyrrolidines) can be prepared from alkenyl amines via treatment with N-chlorosuccinimide (NCS) and then BusSnH. " Internal addition of amine to allylic acetates, catalyzed by Pd(PPh3)4, leads to cyclic products via a Sn2 reaction. Acyclic amines can be prepared by a closely related reaction using palladium catalysts. Three-membered cyclic amines (aziridines)... [Pg.500]

Lithium dialkylcopper reagents couple with allylic acetates to give normal coupling products or those resulting from allylic rearrangement, depending on the... [Pg.545]

The aziridine aldehyde 56 undergoes a facile Baylis-Hillman reaction with methyl or ethyl acrylate, acrylonitrile, methyl vinyl ketone, and vinyl sulfone [60]. The adducts 57 were obtained as mixtures of syn- and anfz-diastereomers. The synthetic utility of the Baylis-Hillman adducts was also investigated. With acetic anhydride in pyridine an SN2 -type substitution of the initially formed allylic acetate by an acetoxy group takes place to give product 58. Nucleophilic reactions of this product with, e. g., morpholine, thiol/Et3N, or sodium azide in DMSO resulted in an apparent displacement of the acetoxy group. Tentatively, this result may be explained by invoking the initial formation of an ionic intermediate 59, which is then followed by the reaction with the nucleophile as shown in Scheme 43. [Pg.117]

Oxidation of the steroidal olefin (XXVII) with thallium(III) acetate gives mainly the allylic acetates (XXXI)-(XXXIII) (Scheme 15), again indicating that trans oxythallation is the preferred reaction course (19). Addition of the electrophile takes place from the less-hindered a-side of the molecule to give the thallinium ion (XXVIII), which by loss of a proton from C-4 would give the alkylthallium diacetate (XXIX). Decomposition of this intermediate by a Type 5 process is probably favorable, as it leads to the resonance-stabilized allylic carbonium ion (XXX), from which the observed products can be derived. Evidence in support of the decomposition process shown in Scheme 15 has been obtained from a study of the exchange reaction between frawr-crotylmercuric acetate and thallium(III) acetate in acetic acid (Scheme 16) (142). [Pg.185]

When the isomeric allylic acetates 11-A and 11-B react with dialkylcuprates, they give very similar product mixtures that contain mainly 11-C with a small amount of 11-D. Discuss the mechanistic implications of the formation of essentially the same product mixture from both reactants. [Pg.778]

A combination of a Tsuji-Trost and a Michael addition was used for the synthesis of (+)-dihydroerythramine 6/1-269, as reported by Desmaele and coworkers [128]. The Pd-catalyzed reaction of the allylic acetate 6/1-267 with the nitromethylarene 6/1-266 in the presence of Cs2C03 as base led to the domino product 6/1-268 as a 4 1 mixture of two diastereomers in 79% yield. Further manipulation of 6/l-268a yielded the desired dihydroerythramine 6/1-269 (Scheme 6/1.70). Interestingly, using the corresponding allylic carbonate without additional base gave the mono-alkylated product only. [Pg.403]

The Pauson-Khand reaction can be facilitated by preparing the necessary ene-yne in situ by an allylic substitution of an alkyne with allylic acetate using a Pd°- and Rh-catalyst The yield of the cydization product 6/4-24 ranges from 0 % with X = O (6/4-24a) to 92% with X=NTs, as well as X = C(C02Et)2 (6/4-24c) (Scheme 6/4.8) [283],... [Pg.460]

Allyl acetals154). Allyl ethers give no or only trace amounts of ylide-derived products in the Rh2(OAc)4-catalyzed reaction with ethyl diazoacetate, thus paralleling the reactivity of allyl chloride. In contrast, cyclopropanation must give way to the ylide route when allyl acetals are the substrates and ethyl diazoacetate or dimethyl diazomalonate the carbenoid precursors. [Pg.139]

Assuming a reactive oxonium ylide 147 (or its metalated form) as the central intermediate in the above transformations, the symmetry-allowed [2,3] rearrangement would account for all or part of 148. The symmetry-forbidden [1,2] rearrangement product 150 could result from a dissociative process such as 147 - 149. Both as a radical pair and an ion pair, 149 would be stabilized by the respective substituents recombination would produce both [1,2] and additional [2,3] rearrangement product. Furthermore, the ROH-insertion product 146 could arise from 149. For the allyl halide reactions, the [1,2] pathway was envisaged as occurring via allyl metal complexes (Scheme 24) rather than an ion or radical pair such as 149. The remarkable dependence of the yield of [1,2] product 150 on the allyl acetal substituents seems, however, to justify a metal-free precursor with an allyl cation or allyl radical moiety. [Pg.140]


See other pages where Allyl acetates production is mentioned: [Pg.198]    [Pg.416]    [Pg.280]    [Pg.198]    [Pg.416]    [Pg.280]    [Pg.62]    [Pg.301]    [Pg.305]    [Pg.310]    [Pg.311]    [Pg.325]    [Pg.346]    [Pg.367]    [Pg.616]    [Pg.102]    [Pg.279]    [Pg.190]    [Pg.361]    [Pg.864]    [Pg.545]    [Pg.923]    [Pg.208]    [Pg.165]    [Pg.183]    [Pg.20]    [Pg.61]    [Pg.681]    [Pg.160]    [Pg.209]    [Pg.174]   


SEARCH



2- allyl acetate allylation

Acetal allylation

Acetals allylations

Acetate production

Allyl acetate

Allylic acetals

Allylic acetates

Allylic acetates acetate

Natural product synthesis allyl acetate

© 2024 chempedia.info