Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl substitution reaction

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Bromination of 2-dialkylaminothiazoles has been reported to be successful by one author (415) and to fail by others (375. 385). If the mechanism of direct electrophilic substitution is accepted for these compounds, it is difficult to understand why alkyl substitution on such a remote position as exocyclic nitrogen may inhibit this reaction in the C-5 position. [Pg.78]

A radically different course is followed when the reaction of 2-alkyl-substituted thiazoles is periormed in methanol or acetonitrile (335), 2 1 adducts containing seven-membered azepine rings (91) are being formed in which two of the original activated hydrogen atoms have altered positions (Scheme 55). A similar azepine adduct (92) was obtained by... [Pg.98]

The most widely studied electrophilic substitution reactions are haloge-nation and nitration. Two main types of substrates are possible alkyl-thiazoles and arylthiazoles. [Pg.380]

Nucleophilic substitution reactions of alkyl halides are related to elimination reactions m that the halogen acts as a leaving group on carbon and is lost as an anion The... [Pg.326]

Representative Functional Group Transformations by Nucleophilic Substitution Reactions of Alkyl Halides... [Pg.328]

The reactions of alcohols with hydrogen halides to give alkyl halides (Chapter 4) are nucleophilic substitution reactions of alkyloxonium ions m which water is the leaving group Primary alcohols react by an 8 2 like displacement of water from the alkyloxonium ion by halide Sec ondary and tertiary alcohols give alkyloxonium ions which form carbo cations m an S l like process Rearrangements are possible with secondary alcohols and substitution takes place with predominant but not complete inversion of configuration... [Pg.357]

As m other nucleophilic substitution reactions alkyl p toluenesulfonates may be used m place of alkyl halides... [Pg.371]

Unlike elimination and nucleophilic substitution reactions foimation of oigano lithium compounds does not require that the halogen be bonded to sp hybndized carbon Compounds such as vinyl halides and aiyl halides m which the halogen is bonded to sp hybndized carbon react m the same way as alkyl halides but at somewhat slowei rates... [Pg.590]

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

Reactions. The CF O— group exerts predominant para orientation in electrophilic substitution reactions such as nitration, halogenation, acylation, and alkylation (350). [Pg.333]

Reactions with Acyl Garbanion Equivalents. Alkyl substituted carbanions CRXY with potential leaving groups X, Y, and acyl carbanion equivalents or CHRX (342) react with alkylboranes, providing products with mixed alkyl groups derived from both reagents. [Pg.319]

In addition to providing fully alkyl/aryl-substituted polyphosphasenes, the versatility of the process in Figure 2 has allowed the preparation of various functionalized polymers and copolymers. Thus the monomer (10) can be derivatized via deprotonation—substitution, when a P-methyl (or P—CH2—) group is present, to provide new phosphoranimines some of which, in turn, serve as precursors to new polymers (64). In the same vein, polymers containing a P—CH group, for example, poly(methylphenylphosphazene), can also be derivatized by deprotonation—substitution reactions without chain scission. This has produced a number of functionalized polymers (64,71—73), including water-soluble carboxylate salts (11), as well as graft copolymers with styrene (74) and with dimethylsiloxane (12) (75). [Pg.259]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

Poly(phenylene oxide)s undergo many substitution reactions (25). Reactions involving the aromatic rings and the methyl groups of DMPPO include bromination (26), displacement of the resultant bromine with phosphoms or amines (27), lithiation (28), and maleic anhydride grafting (29). Additional reactions at the open 3-position on the ring include nitration, alkylation (30), and amidation with isocyanates (31). [Pg.328]

Alkyl-Hyd.roxyla.tion. This is commonly observed as the initial transformation of alkyl-substituted aromatic pesticides such as alachlor [15972-60-8] and metolachlor [51218-45-2] (eq. 2) (2) (16). These reactions are typically catalyzed by relatively nonspecific oxidases found in fungi and actinomycetes. [Pg.215]

Alkyl-substituted succiiiimides are prepared by reaction of alkyleneamines such as TETA or TEPA with the corresponding alkyl substituted succinic anhydride (43). [Pg.43]


See other pages where Alkyl substitution reaction is mentioned: [Pg.270]    [Pg.647]    [Pg.648]    [Pg.648]    [Pg.649]    [Pg.650]    [Pg.650]    [Pg.669]    [Pg.670]    [Pg.670]    [Pg.649]    [Pg.650]    [Pg.233]    [Pg.273]    [Pg.270]    [Pg.647]    [Pg.648]    [Pg.648]    [Pg.649]    [Pg.650]    [Pg.650]    [Pg.669]    [Pg.670]    [Pg.670]    [Pg.649]    [Pg.650]    [Pg.233]    [Pg.273]    [Pg.182]    [Pg.375]    [Pg.329]    [Pg.329]    [Pg.351]    [Pg.975]    [Pg.509]    [Pg.472]    [Pg.42]    [Pg.254]    [Pg.38]    [Pg.266]   
See also in sourсe #XX -- [ Pg.155 , Pg.164 , Pg.167 , Pg.169 , Pg.180 , Pg.183 , Pg.188 ]




SEARCH



2- Alkyl -substituted malononitriles, reaction

2-Substituted alkyl 3-

Alkyl groups substitution reactions

Alkyl halide substitution reactions

Alkyl halides nucleophilic substitution reactions

Alkyl halides, from nucleophilic substitution reactions

Alkyl substitute

Alkylation Reactions Nucleophilic Substitution

Alkylation, enolate ions substitution reactions

Aromatic substitution reactions Friedel-Crafts alkylation

Aromatic substitution reactions alkylation

Electrophilic aromatic substitution reactions Friedel-Crafts alkylation

I Reactions of Alkyl Halides Nucleophilic Substitutions and Eliminations

Nucleophiles alkyl halide substitution reactions

Nucleophilic substitution reactions of alkyl halides

Reactions of Alkyl Halides Nucleophilic Substitutions and Eliminations

Reactions of Alkyl Halides Substitution and Elimination

Reactions of Alkyl Halides The Substitution Reaction

Sn2 substitution reactions conversion of alcohols to alkyl halides

Sodium alkyl thiolates, reaction with halogen substituted metal complexes

Substitution alkylation

Substitution reactions Friedel-Crafts alkylation

Substitution reactions catalytic benzylic alkylation

Substitution reactions copper-catalyzed alkylation

Substitution reactions iridium-catalyzed alkylation

Substitution reactions molybdenum-catalyzed alkylation

Substitution reactions nickel-catalyzed alkylation

Substitution reactions of alkyl halides

Substitution reactions platinum-catalyzed alkylation

Substitution reactions rhodium-catalyzed alkylation

Substitution reactions ruthenium-catalyzed alkylation

© 2024 chempedia.info