Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl radicals, reactivity

In the case of alkyl radicals [e.g., methyl radical (197, 198) and cyclohexyl radical (198)], their nucleophilic behaviour enhances the reactivity of the 2-position. Here it is necessary to have full protonation of the nitrogen atom and to use specific solvents and radical sources. [Pg.369]

The free radicals that we usually see in carbon chemistry are much less stable than these Simple alkyl radicals for example require special procedures for their isolation and study We will encounter them here only as reactive intermediates formed m one step of a reaction mechanism and consumed m the next Alkyl radicals are classified as primary secondary or tertiary according to the number of carbon atoms directly attached to the carbon that bears the unpaired electron... [Pg.168]

Lumped mechanisms are based on the grouping of chemical compounds into classes of similar stmcture and reactivity. For example, all alkanes might be lumped into a single class, the reaction rates and products of which are based on a weighted average of the properties of all the alkanes present. For example, as shown in Table 1, the various alkanes, CH2 2 > react with OH in a similar manner to form alkyl radicals,. When expressed... [Pg.382]

Entry 3 has only alkyl substituents and yet has a significant lifetime in the absence of oxygen. The tris(/-butyl)methyl radical has an even longer lifetime, with a half-life of about 20 min at 25°C. The steric hindrance provided by the /-butyl substituents greatly retards the rates of dimerization and disproportionation of these radicals. They remain highly reactive toward oxygen, however. The term persistent radicals is used to describe these species, because their extended lifetimes have more to do with kinetic factors than with inherent stability." Entry 5 is a sterically hindered perfluorinated radical and is even more long-lived than similar alkyl radicals. [Pg.665]

Simple alkyl radicals such as methyl are considered to be nonnucleophilic. Methyl radicals are somewhat more reactive toward alkenes bearing electron-withdrawing substituents than towards those with electron-releasing substituents. However, much of this effect can be attributed to the stabilizing effect that these substiments have on the product radical. There is a strong correlation of reaction rate with the overall exothermicity of the reaction. Hydroxymethyl and 2-hydroxy-2-propyl radicals show nucleophilic character. The hydroxymethyl radical shows a slightly enhanced reactivity toward acrylonitrile and acrolein, but a sharply decreased reactivity toward ethyl vinyl ether. Table 12.9 gives some of the reactivity data. [Pg.701]

On the basis of the reaction of alkyl radicals with a number of polycyclic aromatics, Szwarc and Binks calculated the relative selectivities of several radicals methyl, 1 (by definition) ethyl, 1.0 n-propyl, 1.0 trichloromethyl, 1.8. The relative reactivities of the three alkyl radicals toward aromatics therefore appears to be the same. On the other hand, quinoline (the only heterocyclic compound so far examined in reactions with alkyl radicals other than methyl) shows a steady increase in its reactivity toward methyl, ethyl, and n-propyl radicals. This would suggest that the nucleophilic character of the alkyl radicals increases in the order Me < Et < n-Pr, and that the selectivity of the radical as defined by Szwarc is not necessarily a measure of its polar character. [Pg.163]

The traditional means of assessment of the sensitivity of radical reactions to polar factors and establishing the electrophilicity or nucleophilieity of radicals is by way of a Hammett op correlation. Thus, the reactions of radicals with substituted styrene derivatives have been examined to demonstrate that simple alkyl radicals have nucleophilic character38,39 while haloalkyl radicals40 and oxygcn-ccntcrcd radicals " have electrophilic character (Tabic 1.4). It is anticipated that electron-withdrawing substituents (e.g. Cl, F, C02R, CN) will enhance overall reactivity towards nucleophilic radicals and reduce reactivity towards electrophilic radicals. Electron-donating substituents (alkyl) will have the opposite effect. [Pg.21]

Giese and Feix65 examined the temperature dependence of the relative reactivity of fumarodinitrilc and methyl a-chloroacrylatc towards a scries of alkyl radicals (Scheme 1.6). The temperature dependence was such that they predicted that the order of reactivity of the radicals would be reversed for temperatures above 280 K (the isosclcctivc temperature - Figure 1.3). This finding clearly indicates the need for care when comparing relative reactivity data.66... [Pg.25]

In the absence of heteroatom containing substituents (e.g. halo-, cyano-), at or conjugated with the radical center, carbon-centered radicals have nucleophilic character. Thus, simple alkyl radicals generally show higher reactivity toward electron-deficient monomers (eg. acrylic monomers) than towards electron-rich monomers (e.g, VAc, S) - Table 3.6. [Pg.113]

Absolute rate constants for addition reactions of cyanoalkyl radicals are significantly lower than for unsubstituted alkyl radicals falling in the range 103-104 M V1.341 The relative reactivity data demonstrate that they possess some electrophilic character. The more electron-rich VAc is very much less reactive than the electron-deficient AN or MA. The relative reactivity of styrene and acrylonitrile towards cyanoisopropyl radicals would seem to show a remarkable temperature dependence that must, from the data shown (Table 3.6), be attributed to a variation in the reactivity of acrylonitrile with temperature and/or other conditions. [Pg.116]

The primary alkyl radical, H, is anticipated to be more reactive and may show different specificity to the secondary or tertiary radical, Tv In VAc and VC polymerizations the radical H appears more prone to undertake intermolecular (Sections 4.3.1.1 and 4.3.1.2) or intramolecular (4.4.3.2) atom transfer reactions. [Pg.178]

One contributing factor, which seems to have been largely ignored, is that the ring closed radical (in many cases a primary alkyl radical) is likely to be much more reactive towards double bonds than the allyl radical propagating species. This species will also have a different propensity for degradative chain transfer (a particular problem with allylamines and related monomers - see 6.2.6.4) and other processes which complicate polymerizations of the monoencs. [Pg.191]

Certain, Y, Y-dialkyl dithioearbamates [e,g. benzyl A)/V-diethyl dithiocarbamate (14)] and xanthates have been used as photoinitiators. Photodissociation of the C-S bond of these compounds yields a reactive alkyl radical (to initiate polymerization) and a less reactive sulfur-centered radical (to undergo primary-radical termination) as shown in Scheme 9.9.30 41 4 ... [Pg.463]

Table 1 shows the kinetic data available for the (TMSjsSiH, which was chosen because the majority of radical reactions using silanes in organic synthesis deal with this particular silane (see Sections III and IV). Furthermore, the monohydride terminal surface of H-Si(lll) resembles (TMSjsSiH and shows similar reactivity for the organic modification of silicon surfaces (see Section V). Rate constants for the reaction of primary, secondary, and tertiary alkyl radicals with (TMSIsSiH are very similar in the range of temperatures that are useful for chemical transformations in the liquid phase. This is due to compensation of entropic and enthalpic effects through this series of alkyl radicals. Phenyl and fluorinated alkyl radicals show rate constants two to three orders of magnitude... [Pg.118]

The low reactivity of alkyl and/or phenyl substituted organosilanes in reduction processes can be ameliorated in the presence of a catalytic amount of alkanethiols. The reaction mechanism is reported in Scheme 5 and shows that alkyl radicals abstract hydrogen from thiols and the resulting thiyl radical abstracts hydrogen from the silane. This procedure, which was coined polarity-reversal catalysis, has been applied to dehalogenation, deoxygenation, and desulfurization reactions.For example, 1-bromoadamantane is quantitatively reduced with 2 equiv of triethylsilane in the presence of a catalytic amount of ferf-dodecanethiol. [Pg.136]

A free radical (often simply called a radical) may be defined as a species that contains one or more unpaired electrons. Note that this definition includes certain stable inorganic molecules such as NO and NO2, as well as many individual atoms, such as Na and Cl. As with carbocations and carbanions, simple alkyl radicals are very reactive. Their lifetimes are extremely short in solution, but they can be kept for relatively long periods frozen within the crystal lattices of other molecules. Many spectral measurements have been made on radicals trapped in this manner. Even under these conditions, the methyl radical decomposes with a half-life of 10-15 min in a methanol lattice at 77 K. Since the lifetime of a radical depends not only on its inherent stabihty, but also on the conditions under which it is generated, the terms persistent and stable are usually used for the different senses. A stable radical is inherently stable a persistent radical has a relatively long lifetime under the conditions at which it is generated, though it may not be very stable. [Pg.238]

The strained hydrocarbon [1,1,1] propellane is of special interest because of the thermodynamic and kinetic ease of addition of free radicals (R ) to it. The resulting R-substituted [ 1.1.1]pent-1-yl radicals (Eq. 3, Scheme 26) have attracted attention because of their highly pyramidal structure and consequent potentially increased reactivity. R-substituted [1.1.1]pent-1-yl radicals have a propensity to bond to three-coordinate phosphorus that is greater than that of a primary alkyl radical and similar to that of phenyl radicals. They can add irreversibly to phosphines or alkylphosphinites to afford new alkylphosphonites or alkylphosphonates via radical chain processes (Scheme 26) [63]. The high propensity of a R-substituted [1.1.1] pent-1-yl radical to react with three-coordinate phosphorus molecules reflects its highly pyramidal structure, which is accompanied by the increased s-character of its SOMO orbital and the strength of the P-C bond in the intermediate phosphoranyl radical. [Pg.59]

Cr(II) has been used to bring about dehalogenation of alkyl halides involving the production of alkyl radicals, and details have been provided in a substantive review (Castro 1998). The ease of reduction is generally iodides > bromides > chlorides, while tertiary halides are the most reactive and primary halides the least (Castro and Kray 1963, 1966). [Pg.26]

Scheme 2.1 The key reactions that occur during lipid peroxidation, in this scheme, X represents the initiating species, which must be a highiy reactive oxidant, in order to abstract a H atom from a poiyunsaturated fatty-acid chain LH, the iipid substrate LO2, the peroxyi radicai L, the alkyl radical LOOH, the lipid hydroperoxide. Scheme 2.1 The key reactions that occur during lipid peroxidation, in this scheme, X represents the initiating species, which must be a highiy reactive oxidant, in order to abstract a H atom from a poiyunsaturated fatty-acid chain LH, the iipid substrate LO2, the peroxyi radicai L, the alkyl radical LOOH, the lipid hydroperoxide.
Figure 17.2 Lipid peroxidation scheme. LH, a polyunsaturated fatty acid LOOM, lipid hydroperoxide LOH, lipid alcohol L, lipid radical LOO, lipid hydroperoxyl radical LO, lipid alkoxyl radical. Initiation the LH hydrogen is abstracted by reactive oxygen (e.g. lipid alkyl radical, lipid alkoxy radical, lipid hydroperoxyl radical, hydroxy radical, etc.) to produce a new lipid alkyl radical, L. Propagation the lipid alkyl, alkoxyl or hydroperoxyl radical abstracts hydrogen from the neighbouring LH to generate a new L radical. Figure 17.2 Lipid peroxidation scheme. LH, a polyunsaturated fatty acid LOOM, lipid hydroperoxide LOH, lipid alcohol L, lipid radical LOO, lipid hydroperoxyl radical LO, lipid alkoxyl radical. Initiation the LH hydrogen is abstracted by reactive oxygen (e.g. lipid alkyl radical, lipid alkoxy radical, lipid hydroperoxyl radical, hydroxy radical, etc.) to produce a new lipid alkyl radical, L. Propagation the lipid alkyl, alkoxyl or hydroperoxyl radical abstracts hydrogen from the neighbouring LH to generate a new L radical.
Allylic stannanes are an important class of compounds that undergo substitution reactions with alkyl radicals. The chain is propagated by elimination of the trialkyl -stannyl radical.315 The radical source must have some functional group that can be abstracted by trialkylstannyl radicals. In addition to halides, both thiono esters316 and selenides317 are reactive. [Pg.963]

These reactions exhibit excellent diastereoselectivity derived from the chiral oxazo-lidinone auxiliary. The Lewis acid forms a chelate with the oxazoline and presumably also serves to enhance reactivity. In addition to ethyl, other primary, secondary, and tertiary alkyl radicals, as well as acetyl and benzoyl radicals were used successfully in analogous reactions. [Pg.966]

Simple alkyl radicals are very much more reactive, and were first studied systematically only in 1929. The radicals were generated by the thermal decomposition of organometallic compounds, such as PbMe4,... [Pg.301]

Radicals of allylic, RCH=CHCH2- (47), and benzylic, PhCHR (48), type are more stable, and less reactive, than simple alkyl radicals, because of delocalisation of the unpaired electron over the n orbital system in each case ... [Pg.311]

Alkyl Radical, R, in Poly (R-Methacrylate) Reactive Hydrogen on Alkyl Carbon Atom No. Intrinsic Viscosity in MEK, 23°C Hours to Attain 50% Insolubility... [Pg.185]


See other pages where Alkyl radicals, reactivity is mentioned: [Pg.126]    [Pg.302]    [Pg.126]    [Pg.302]    [Pg.335]    [Pg.220]    [Pg.642]    [Pg.293]    [Pg.338]    [Pg.31]    [Pg.178]    [Pg.345]    [Pg.242]    [Pg.124]    [Pg.146]    [Pg.172]    [Pg.111]    [Pg.895]    [Pg.28]    [Pg.961]    [Pg.421]    [Pg.10]    [Pg.98]    [Pg.24]    [Pg.244]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Alkyl peroxy radical reactivity

Alkyl peroxy radical reactivity compounds

Alkyl radicals

Radical alkylation

Radical reactivity

Radicals reactive

© 2024 chempedia.info