Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl asymmetric reductions

Optically active 1-alkoxyallylstannanes are more readily available by asymmetric reduction of acylstannanes using either ( + )-(/J)-BINAL-Il105 106 or LiAlH4-Darvon alcohol [(2S,3/ )-4-dimethylamino-3-mcthy]-1,2-diphenyl-2-butanol] 06 followed by O-alkylation. The stereoselectivity of the BINAL-H reductions differs from that usually observed, and has been attributed to a tin-oxygen hypervalent interaction107, l08. [Pg.382]

Alkoxyallylstannanes are also available by boron trifluoride-diethyl ether complex induced isomerization of their 1-alkoxy isomers. This isomerization proceeds in an antarafacial manner with excellent stereoselectivity to give (Z)-3-alkoxyallylstannanes possibly via an intermolecu-lar exchange process119. Coupled with the asymmetric reduction of acylstannanes (see Section 1.3.3.3.2.3.1) this provides access to 1-alkyl-3-alkoxyallylstannanes of useful optical purity106. [Pg.386]

Dynamic kinetic resolution of racemic ketones proceeds through asymmetric reduction when the substrate does racemize and the product does not under the applied experimental conditions. Dynamic kinetic resolution of a-alkyl P-keto ester has been performed through enzymatic reduction. One isomer, out of the four possible products for the unselective reduction (Figure 8.38), can be selectively synthesized using biocatalyst, and by changing the biocatalyst or conditions, all of the isomers can be selectively synthesized [29]. [Pg.221]

In 2000, Woodward et al. reported that LiGaH4, in combination with the S/ 0-chelate, 2-hydroxy-2 -mercapto-1,1 -binaphthyl (MTBH2), formed an active catalyst for the asymmetric reduction of prochiral ketones with catecholborane as the hydride source (Scheme 10.65). The enantioface differentiation was on the basis of the steric requirements of the ketone substituents. Aryl w-alkyl ketones were reduced in enantioselectivities of 90-93% ee, whereas alkyl methyl ketones e.g. i-Pr, Cy, t-Bu) gave lower enantioselectivities of 60-72% ee. [Pg.343]

The intermediate enolate or enol ether from the initial reduction of an enone may be alkylated in situ (Eq. 281).455 / -Substituted cyclopentenones may be asymmetrically reduced and alkylated459 (see section on asymmetric reductions of enones). Enolates may also be trapped with an aldehyde in a reductive aldol condensation of an enone with an aldehyde,455 permitting a regioselective aldol condensation to be carried out as shown in Eq. 282.455 This class of reductive aldol condensation reactions can also occur in a cyclic manner (Eq. 283).460... [Pg.92]

It is well accepted that the asymmetric reduction of simple dialkyl ketones generally proceeds with low enantioselectivity.68 Ohkuma et al.69 reported that hydrogenation of simple ketones can be achieved using Ru(II) catalysts in the presence of diamine and alcoholic KOH in 2-propanol. Promising results have been achieved in the asymmetric hydrogenation of alkyl aryl ketones with a mixture of an Ru-BINAP complex, chiral diamine, and KOH (Scheme 6-33). [Pg.362]

Boranes have opened the door to asymmetric reduction of carbonyl compounds. The first attempt at modifying borane with a chiral ligand was reported by Fiaud and Kagan,75 who used amphetamine borane and desoxyephedrine borane to reduce acetophenone. The ee of the 1-phenyl ethanol obtained was quite low (<5%). A more successful borane-derived reagent, oxazaborolidine, was introduced by Hirao et al.76 in 1981 and was further improved by Itsuno and Corey.77 Today, this system can provide high stereoselectivity in the asymmetric reduction of carbonyl compounds, including alkyl ketones. [Pg.367]

The quininium and quinidinium fluoride catalysts, 10 (R=H etc., X=F) and 8 (R=H, X=F), were used for the asymmetric reduction of alkyl aryl ketones in conjunction with silanes.1751 One of the most efficient silanes proved to be tris(trimethylsiloxy)silane, which together with 8 (R=H, X=F) reduced acetophenone to give the alcohol 102 in almost quantitative yield with 78 % ee, as shown in Scheme 31. The... [Pg.140]

Scheme 31. Asymmetric reduction of alkyl aryl ketones. Scheme 31. Asymmetric reduction of alkyl aryl ketones.
Asymmetric reductions. The reagent can effect asymmetric reduction of alkyl aryl ketones and unhindered dialkyl ketones in high optical yield.1 It is the most useful reagent known to date for asymmetric reduction of even hindered a-keto esters to (S)-a-hydroxy esters in >90% ee.2 It is also effective for asymmetric reduction of phosphinyl imines of dialkyl ketones, RlR2C=NP(0)(C6H5)2 (50-84% ee).3... [Pg.141]

In the asymmetric reduction of ketones, stereodifferentiation has been explained in terms of the steric recognition of two substituents on the prochiral carbon by chirally modified reducing agents40. Enantiomeric excesses for the reduction of dialkyl ketones, therefore, are low because of the little differences in the bulkiness of the two alkyl groups40. In the reduction of ketoxime ethers, however, the prochiral carbon atom does not play a central role for the stereoselectivity, and dialkyl ketoxime ethers are reduced in the same enantiomeric excess as are aryl alkyl ketoxime ethers. Reduction of the oxime benzyl ethers of (E)- and (Z)-2-octanone with borane in THF and the chiral auxiliary (1 R,2S) 26 gave (S)- and (R)-2-aminooctane in 80 and 79% ee, respectively39. [Pg.112]

Asymmetric reduction of ketones or aldehydes to chiral alcohols has received considerable attention. Methods to accomplish this include catalytic asymmetric hydrogenation, hydrosilylation, enzymatic reduction, reductions with biomimetic model systems, and chirally modified metal hydride and alkyl metal reagents. This chapter will be concerned with chiral aluminum-containing reducing re-... [Pg.232]

Cervinka has employed these reagents in the asymmetric reduction of im-monium salts (49,50) and imines (51). The reduction of 2-substituted jV-methyl-A -tetrahydropyridinium perchlorates (10) with (— )-menthol-LAH in ether or THF led to optically active piperidine derivatives (eq. [10]). The optical purity obtained for the Pr" derivative was 12%. In the case of R = Me and Pr" the configuration of the predominant enantiomer was shown to be S. The (-)-menthol-LAH reagent was similarly shown to reduce l-methyl-2-alkyl-A -di-hydropyrrolinium perchlorates (11) to optically active pyrrolidine derivatives (eq. [11]). The optical yield could be calculated only for R = CH2Ph, and was only 6% (/ enantiomer) obtained with a 1 1 (— )-menthoi-LAH reagent. With 2 1 or 3 1 molar ratios of menthol LAH, the optical yield decreased. The... [Pg.241]

The 36d-LAH complex was applied to the reduction of ketone oximes and their O-tetrahydropyranyl and O-methyl derivatives to optically active amines (69). Results for a variety of phenyl alkyl and dialkyl ketones are shown in Table 4. The predominant amines formed all were of the S absolute configuration with optical purities up to 56%. The oxime hydroxy group presumably reacts with the less hindered H2 in the 36d-LAH complex (cf. Scheme 6) to form an oxime complex (45), which probably undergoes infermolecular hydride transfert of H2 from a second molecule of the 36d-LAH complex (Scheme 8). Asymmetric reduction with the ethanol-modified 36d-LAH reagent gave amines of R con-... [Pg.252]

Asymmetric Reduction of Aryl Alkyl Ketones with Amino Alcohol-LAH Reagents... [Pg.268]

Peroxidases have been used very frequently during the last ten years as biocatalysts in asymmetric synthesis. The transformation of a broad spectrum of substrates by these enzymes leads to valuable compounds for the asymmetric synthesis of natural products and biologically active molecules. Peroxidases catalyze regioselective hydroxylation of phenols and halogenation of olefins. Furthermore, they catalyze the epoxidation of olefins and the sulfoxidation of alkyl aryl sulfides in high enantioselectivities, as well as the asymmetric reduction of racemic hydroperoxides. The less selective oxidative coupHng of various phenols and aromatic amines by peroxidases provides a convenient access to dimeric, oligomeric and polymeric products for industrial applications. [Pg.103]

The resolution required for the synthesis of 288 or 291 can be avoided by making them by asymmetric reduction or by asymmetric alkylation of an aldehyde . The amines 291 (R = Et or w-Bu) formed in this way are lithiated with diastereoselectivity similar to, or greater than, that achieved with 288. a-Ethyl and a-butylphosphines 294 incidentally may show even higher selectivity than the more widely used a-methylphosphine ligand PPEA 283. [Pg.567]

Another example showing the utility of 1 is the asymmetric hydrogenation of vinyl esters which usually are used as acyl donors in enzymatic resolution. In this transformation, vinyl esters are converted to ketones which then undergo asymmetric reductive acylation to give chiral esters as described in Scheme 1.13. The overall reaction thus corresponds to the asymmetric hydrogenation of vinyl ester to the corresponding alkyl esters. [Pg.10]

As an extension of these studies on the use of sulfoximines in asymmetric reductions, BlNOL-derived phosphino sulfoximines of the 105 type were tested in both rhodium-catalyzed hydrogenations (yielding optically active diesters 104 or amino acid derivatives Scheme 2.1.1.35) and palladium-catalyzed allylic alkylations (not shown) in collaboration with Reetz and Gais [81, 82]. Here, enantioselectivities of up to >99 and 66% ee, respectively, were achieved. [Pg.169]

Asymmetric reduction of a,fi-enon s. This combination of reagents (1 1) in conjunction with N-cthylaniline (2 equivalents) reduces alkyl aryl ketones to alcohols with high stereoselectivity.1 Under these conditions 2,/1-unsaturated ketones arc reduced to optically active (S)-allylic alcohols. Optical yields of 80 98% have been reported for open-chain enones. Reduction of cyclic enones is somewhat less efficient. The method was used to reduce 1 to 2, which has been used as an intermediate in an anthracyclinone synthesis.2... [Pg.238]

This asymmetric reduction has been used for synthesis of optically active 4-alkyl-y-lactones (equation l).4... [Pg.321]

Asymmetric reduction of ketonesLithium aluminium hydride in conjunction with this chiral ligand reduces prochiral aromatic ketones to (S)-secondary alcohols in 90-95% optical yields. Optical yields are lower (10-40% ee) in the case of alkyl aryl ketones. It is superior to (S)-2-(anilinomethyl)pyrrolidine for this reduction. Evidently the two methyl groups enhance the enantioselectivity. [Pg.458]

Asymmetric reduction of ketones. Ipc BCl is somewhat superior to B-3-pin-anyl-9-borabicyclo[3.3.1]nonane (12, 397) for enantioselective reduction of alkyl aryl ketones at normal pressures to (S)-alcohols. In general, optical yields are 78-98%. It is also useful for asymmetric reduction of ketones in which one alkyl group is tertiary. Thus 3,3-dimethyl-2-butanone is reduced in 95% ee at 25°.1... [Pg.72]

Asymmetric reduction of alkyl aryl ketones with trialkoxysilanes is promoted by a catalytic amount of chiral nucleophiles [39]. The reactive species is a transiently prepared hypervalent silicon hydride. 2, 4, 6 -Trimethylacetophenone was reduced with equimolecular amounts of trimethoxysilane in the presence of the monolithio salt of (R)-BINAPHTHOL (substrate Li=20 l) in a 30 1 ether-TMEDA mixed solvent at 0 °C to afford the R product in 90% ee (Scheme 21) [40]. The presence of TMEDA was crucial to achieve high yield and enantiose-lectivity. Reduction of less hindered ketonic substrates preferentially gave the... [Pg.69]

Reduction The asymmetric reduction of a series of aryl alkyl ketones with quaternary ammonium fluorides and silanes was reported by Drew and Lawrence [55]. In these reactions, the best catalysts (e.g., 6f) were from the qui ni ne/quinidine series in fact, a fluoride salt prepared from cinchonine gave no induction. The use of trimethoxysilane resulted in faster rates but lower enantioselectivites when compared with tris(trimethoxy)silane. It is interesting that, with the... [Pg.744]


See other pages where Alkyl asymmetric reductions is mentioned: [Pg.820]    [Pg.237]    [Pg.106]    [Pg.110]    [Pg.752]    [Pg.146]    [Pg.110]    [Pg.257]    [Pg.274]    [Pg.25]    [Pg.63]    [Pg.411]    [Pg.337]    [Pg.256]    [Pg.337]    [Pg.193]    [Pg.820]    [Pg.48]    [Pg.71]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.336]    [Pg.521]   
See also in sourсe #XX -- [ Pg.568 ]




SEARCH



Alkyl reduction

Alkylations, asymmetric

Asymmetric reduction

Asymmetrical reduction

Reduction alkylation

Reduction reductive alkylation

Reductive alkylation

© 2024 chempedia.info