Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkoxides chiral

Due to their metal complexation properties, Buono et al. have envisioned the use of titanium alkoxide-chiral o-hydroxyarylphosphine oxides complexes in a catalytic enantioselective trimethylsilylcyanation reaction of various aromatic aldehydes [56] (Table 6). [Pg.96]

The advantages of titanium complexes over other metallic complexes is high selectivity, which can be readily adjusted by proper selection of ligands. Moreover, they are relative iaert to redox processes. The most common synthesis of chiral titanium complexes iavolves displacement of chloride or alkoxide groups on titanium with a chiral ligand, L ... [Pg.151]

An increasing number of examples of ring formation through 1,5-electrocyclization of appropriate carbanions are illustrated in Scheme 27. In the last example the use of a chiral alkoxide (R = menthyl or bornyl) results in the formation of chiral indolines with optical purities ranging from 17 to 31%. [Pg.105]

Epoxides bearing electron-withdrawing groups have been most commonly synthesized by the Darzens reaction. The Darzens reaction involves the initial addition of an ct-halo enolate 40 to the carbonyl compound 41, followed by ring-closure of the alkoxide 42 (Scheme 1.17). Several approaches for inducing asymmetry into this reaction - the use of chiral auxiliaries, reagents, or catalysts - have emerged. [Pg.15]

Most successful approaches involving addition reactions in the presence of chiral additives utilize organolithium, organomagnesium and the recently introduced organotitanium reagents, which are known to coordinate with amines, ethers, metal amides and alkoxides. [Pg.147]

The same group extended this work to a cyclic imine (Scheme 5-47) better results were obtained with heterobimetallic lanthanide catalysts than with chiral titanium alkoxides. [Pg.166]

Scheme 5-47 Asymmetric hydrophosphonylation of a cyclic imine catalyzed by heterobimetallic rare earth/alkali metal/BI-NOL complexes or by chiral titanium alkoxide complexes... Scheme 5-47 Asymmetric hydrophosphonylation of a cyclic imine catalyzed by heterobimetallic rare earth/alkali metal/BI-NOL complexes or by chiral titanium alkoxide complexes...
The directive effect of allylic hydroxy groups can be used in conjunction with chiral catalysts to achieve enantioselective cyclopropanation. The chiral ligand used is a boronate ester derived from the (VjA jA N -tetramethyl amide of tartaric acid.186 Similar results are obtained using the potassium alkoxide, again indicating the Lewis base character of the directive effect. [Pg.920]

Based on these reports, we started investigation of the asymmetric addition of acetylide to pMB protected 5, mainly in the presence of chiral P-amino alcohols. Many types of chiral amines were also screened (e.g., diamines, diethers), and it was soon found that addition of P-amino alkoxides effectively induced enantiose-lectivity on the addition. Since the best result was obtained with a stoichiometric amount of chiral amino alcohols, we focused our screen on readily available chiral P-amino alcohols and the results are summarized in Table 1.2. [Pg.16]

Introduction Since we had already developed the novel asymmetric addition of lithium acetylide to ketimine 5, we did not spend any time on investigating any chiral resolution methods for Efavirenz . Our previous method was applied to 41. In the presence of the lithium alkoxide of cinchona alkaloids, the reaction proceeded to afford the desired alcohol 45, as expected, but the enantiomeric excess of 45 was only in the range 50-60%. After screening various readily accessible chiral amino alcohols, it was found that a derivative of ephedrine, (1J ,2S) l-phenyl-2-(l-pyrrolidinyl)propan-l-ol (46), provided the best enantiomeric excess of 45 (as high as 98%) with an excellent yield (vide infra). Prior to the development of asymmetric addition in detail, we had to prepare two additional reagents, the chiral modifier 46 and cyclopropylacetylene (37). [Pg.23]

It would be ideal if the asymmetric addition could be done without a protecting group for ketone 36 and if the required amount of acetylene 37 would be closer to 1 equiv. Uthium acetylide is too basic for using the non-protected ketone 36, we need to reduce the nucleophile s basicity to accommodate the acidity of aniline protons in 36. At the same time, we started to understand the mechanism of lithium acetylide addition. As we will discuss in detail later, formation of the cubic dimer of the 1 1 complex of lithium cyclopropylacetylide and lithium alkoxide of the chiral modifier3 was the reason for the high enantiomeric excess. However, due to the nature of the stable and rigid dimeric complex, 2 equiv of lithium acetylide and 2 equiv of the lithium salt of chiral modifier were required for the high enantiomeric excess. Therefore, our requirements for a suitable metal were to provide (i) suitable nucleophilicity (ii) weaker basicity, which would be... [Pg.29]

Many of the papers from Merck reported the 1 1 complex of lithium acetylide and lithium alkoxide of the chiral modifier as monomer and the dimer of the 1 1 complex as tetramer. [Pg.29]

We came up with the idea of using a dummy ligand, as shown in Scheme 1.23 [34]. Reaction of dimethylzinc with our chiral modifier (amino-alcohol) 46 provided the methylzinc complex 62, which was subsequently reacted with 1 equiv of MeOH, to form chiral zinc alkoxide 63, generating a total of 2 moles of methane. Addition of lithium acetylide to 63 would generate an ate complex 64. The ate complex 64 should exist in equilibrium with the monomeric zincate 65 and the dimer 66. However, we expected that the monomer ate complex 64 and the mono-... [Pg.30]

Further optimization of this reaction was carried out with TFE as an achiral adduct, since reaction with TFE is much faster than that with neopentyl alcohol. We found that dimethyl- and diethylzinc were equally effective, and the chiral zinc reagent could be prepared by mixing the chiral modifier, the achiral alcohol and dialkylzinc reagent in any order without affecting the conversion and selectivity of the reaction. However, the ratio of chiral to achiral modifier does affect the efficiency of the reaction. Less than 1 equiv of the chiral modifier lowered the ee %. For example with 0.8 equiv of 46 the enantiomeric excess of 53 was only 58.8% but with 1 equiv of 46 it was increased to 95.6%. Reaction temperature has a little effect on the enantiomeric excess. Reactions with zinc alkoxide derived for 46 and TFE gave 53 with 99.2% ee at 0°C and 94.0% ee at 40°C. [Pg.33]

Differences in chirality of substrate, and nature of solvent, have no effect on the competitive nature of the displacement of 0-alkyl and S-methyl groups in the reactions between (+)-pinacolyl alkoxide and 0-ethyl (and methyl) S-methyl methylphosphonothioates (Scheme 23). For the (R)-( + ) esters, e.g. (210), the displacements are highly stereoselective and occur with configurational inversion,but the enantiomeric esters do not display such stereoselectivity. (-)-Menthol might be considered a mirror image of (S)-pinacol, and similar reactions with the sodium salt of (-)-menthol occur highly stereoselectively... [Pg.176]

The introduction of various metal-catalyzed reactions, however, remarkably expanded the scope of the epoxidation of Q,.3-unsaturatcd ketones. Enders et al. have reported that a combination of diethylzinc and A-methyl-pseudoephedrine epoxidizes various o,. j-unsaturatcd ketones, under an oxygen atmosphere, with good to high enantioselectivity (Scheme 23).126 In this reaction, diethylzinc first reacts with the chiral alcohol, and the resulting ethylzinc alkoxide is converted by oxygen to an ethylperoxo-zinc species that epoxidizes the a,/3-unsaturated ketones enantioselectively. Although a stoichiometric chiral auxiliary is needed for this reaction, it can be recovered in almost quantitative yield. [Pg.223]

TiIV-based Lewis acids are effective in ring-forming reactions such as Diels-Alder reactions (Scheme 25).94 Besides the usual TiX4 compounds (X = halide or alkoxide), Cp2Ti(OTf)2 is also a reactive catalyst for the Diels-Alder reaction,95 and it has been reported that [( PrO)2Ti(bpy)(OTf) ( PrOLQXOTf) is even more effective than Cp2Ti(OTf)2.96 In asymmetric synthesis, reactions with chiral dienophiles have been widely investigated. [Pg.409]

Because of the separation of this chapter into fundamental synthetic and structural aspects of organozinc compounds and the applications of these compounds in organic synthesis, many topics are treated twice, but with decidedly different emphases. By way of example, the important organozinc alkoxides are covered first in the inorganometallic section, where the emphasis is on their syntheses, structures, and applications other than in organic synthesis. Later, in Section 2.06.16.2, the uses of such compounds as chiral catalysts in asymmetric addition reactions are discussed. [Pg.312]

The use of alkylhydroperoxides as epoxidizing agents for allylic alcohols under catalytic conditions was soon expanded into enantioselective epoxidation with use of the more mild titanium alkoxides in the presence of chiral tartaric esters116. As concerns the epoxidation of functionalized dienes, these now so-called Sharpless conditions [Ti(OPr )4, dialkyl tartrate, TBHP] have been utilized to enantioselectively epoxidize 1,4-pentadiene-... [Pg.909]


See other pages where Alkoxides chiral is mentioned: [Pg.157]    [Pg.106]    [Pg.116]    [Pg.117]    [Pg.121]    [Pg.123]    [Pg.126]    [Pg.139]    [Pg.264]    [Pg.293]    [Pg.148]    [Pg.429]    [Pg.230]    [Pg.147]    [Pg.149]    [Pg.154]    [Pg.158]    [Pg.168]    [Pg.175]    [Pg.909]    [Pg.293]    [Pg.1174]    [Pg.195]    [Pg.264]    [Pg.293]    [Pg.76]    [Pg.416]    [Pg.174]    [Pg.9]    [Pg.53]    [Pg.657]   
See also in sourсe #XX -- [ Pg.474 ]




SEARCH



Aluminum alkoxides chiral

Chiral alkoxide

Chiral alkoxide catalysts

Chiral zinc alkoxide catalysts

Lanthanide alkoxide catalysts chiral

© 2024 chempedia.info