Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes pattern

The pattern of alkene stability determined from heats of hydrogenation parallels exactly the pattern deduced from heats of combustion... [Pg.233]

Stereochemistry refers to chemistry in three dimensions Its foundations were laid by Jacobus van t Hoff and Joseph Achille Le Bel m 1874 Van t Hoff and Le Bel mde pendently proposed that the four bonds to carbon were directed toward the corners of a tetrahedron One consequence of a tetrahedral arrangement of bonds to carbon is that two compounds may be different because the arrangement of their atoms m space IS different Isomers that have the same constitution but differ m the spatial arrangement of their atoms are called stereoisomers We have already had considerable experience with certain types of stereoisomers—those involving cis and trans substitution patterns m alkenes and m cycloalkanes... [Pg.281]

Monocyclic /3-lactams undergo thermolysis or photolysis to give alkenes and isocyanates or ketenes and imines depending on the substitution pattern (75S547 p. 586). Apparently, thermolysis favours the former pathway while photolysis favours the latter (68CB2669). [Pg.249]

Structure elucidation does not necessarily require the complete analysis of all multiplets in complicated spectra. If the coupling constants are known, the characteristic fine structure of the single multiplet almost always leads to identification of a molecular fragment and, in the case of alkenes and aromatic or heteroaromatic compounds, it may even lead to the elucidation of the complete substitution pattern. [Pg.16]

In the case of alkenes and aromatic and heteroaromatic compounds, analysis of a single multiplet will often clarify the complete substitution pattern. A few examples will illustrate the procedure. [Pg.22]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

Monosubstituted and disubstjtuted alkenes have characteristic =C—H out-ofplane bending absorptions in the 700 to 1000 cm-1 range( thereby allowing the substitution pattern on a double bond to be determined. Monosubstituted alkenes such as 1-hexene show strong characteristic bands at 910 and 990 cm-1, and 2,2-disubstituted alkenes (R2C=CH2) have an intense band at 890 cm-1. [Pg.427]

It was further confirmed that although the fragmentation pattern is dependent on the substitution pattern, most thiirane dioxides formed in situ decompose rapidly and stereospecifically under alkaline conditions to yield the corresponding alkenes with retention of configuration156. [Pg.420]

Although alkyl groups in general increase the rates of electrophilic addition, we have already mentioned (p. 974) that there is a different pattern depending on whether the intermediate is a bridged ion or an open carbocation. For brominations and other electrophilic additions in which the first step of the mechanism is rate determining, the rates for substituted alkenes correlate well with the ionization potentials of the alkenes, which means that steric effects are not important. Where the second step is rate determining [e.g., oxymercuration (15-3), hydroboration (15-17)], steric effects are important. ... [Pg.983]

As we saw in the previous section, Markovnikov s rule tells us to place the H on the less substituted carbon, and to place the X on the more substituted carbon. The rule is named after Vladimir Markovnikov, a Russian chemist, who first showed the regiochemical preference of HBr additions to alkenes. When Markovnikov recognized this pattern in the late 19th century, he stated the rule in terms of the placement of the proton (specifically, that the proton will end up on the less substituted carbon atom). Now that we understand the reason for the regiochemical preference (carbocation stability), we can state Markovnikov s rule in a way that more accurately reflects the underlying principle The regiochemistry will be determined by the preference for the reaction to proceed via the more stable carbocation intermediate. [Pg.262]

Intramolecular enone-alkene cycloadditions are also possible. In the case of (3-(5-pentenyl) substituents, there is a general preference for exo-type cyclization to form a five-membered ring.195 This is consistent with the general pattern for radical cyclizations and implies initial bonding at the (3-carbon of the enone. [Pg.547]

Intermodular Alkylation by Carbocations. The formation of carbon-carbon bonds by electrophilic attack on the ir system is a very important reaction in aromatic chemistry, with both Friedel-Crafts alkylation and acylation following this pattern. These reactions are discussed in Chapter 11. There also are useful reactions in which carbon-carbon bond formation results from electrophilic attack by a carbocation on an alkene. The reaction of a carbocation with an alkene to form a new carbon-carbon bond is both kinetically accessible and thermodynamically favorable. [Pg.862]

A variety of double bonds give reactions corresponding to the pattern of the ene reaction. Those that have been studied from a mechanistic and synthetic perspective include alkenes, aldehydes and ketones, imines and iminium ions, triazoline-2,5-diones, nitroso compounds, and singlet oxygen, 10=0. After a mechanistic overview of the reaction, we concentrate on the carbon-carbon bond-forming reactions. The important and well-studied reaction with 10=0 is discussed in Section 12.3.2. [Pg.869]

From the point of view of both synthetic and mechanistic interest, much attention has been focused on the addition reaction between carbenes and alkenes to give cyclopropanes. Characterization of the reactivity of substituted carbenes in addition reactions has emphasized stereochemistry and selectivity. The reactivities of singlet and triplet states are expected to be different. The triplet state is a diradical, and would be expected to exhibit a selectivity similar to free radicals and other species with unpaired electrons. The singlet state, with its unfilled p orbital, should be electrophilic and exhibit reactivity patterns similar to other electrophiles. Moreover, a triplet addition... [Pg.905]

The radical versus electrophilic character of triplet and singlet carbenes also shows up in relative reactivity patterns given in Table 10.1. The relative reactivity of singlet dibromocarbene toward alkenes is more similar to electrophiles (bromination, epoxidation) than to radicals ( CCl,). [Pg.906]

The reactive intermediates under some conditions may be the carbenoid a-haloalkyllithium compounds or carbene-lithium halide complexes.158 In the case of the trichloromethyllithium to dichlorocarbene conversion, the equilibrium lies heavily to the side of trichloromethyllithium at — 100°C.159 The addition reaction with alkenes seems to involve dichlorocarbene, however, since the pattern of reactivity toward different alkenes is identical to that observed for the free carbene in the gas phase.160... [Pg.914]

The coordinated quinone methide Jt-system of complex 24 can also undergo cycloaddition (Scheme 3.17). When 24 was reacted with /V-methylmaleimide, a [3+2] cycloaddition took place to give the tricyclic iridium complex 29. The closest example to this unprecedented reactivity pattern is a formal [3 + 2] cycloaddition of /)-quinone methides with alkenes catalyzed by Lewis acids, although in that reaction the QMs serve as electron-poor reagents. 36... [Pg.79]

The regioselectivity of the hydroformylation of alkenes is a function of many factors. These include inherent substrate preferences, directing effects exerted by functional groups as part of the substrate, as well as catalyst effects. In order to appreciate substrate inherent regioselectivity trends, alkenes have to be classified according to the number and nature of their substitution pattern (Scheme 3) [4]. [Pg.149]

The reactions of transition metals with small alkenes were also studied,45-47 94-96,98,102 103,105 and it was found that many metals from the second and third rows react with alkenes, including ethene. The measured reaction rates typically increased as the hydrocarbon was changed from ethene to propene, but levelled off for larger alkenes.94 Among the first-row metals, only Ni reacted with ethene, but several of the other metals reacted with larger alkenes.94 The observed trend in reactivity for alkene reactions was 2nd > 3rd > 1st, similar to what was observed for the M + N2O reactions (see Fig. 5). This trend was explained in both cases by the pattern of electronic states in each row, as discussed above. [Pg.223]

Q9. Check out the aromatic region. Are you happy with the splitting pattern Now do the same with the alkene. [Pg.195]

The generalized Woodward-Hoffmann rule suggests that a synchronous addition of disulfonium dications at the double C=C bond of alkenes would be a thermally forbidden process and so would be hardly probable. Simulation of the frontal attack by ethylene on l,4-dithioniabicyclo[2.2.0]hexane 115 gave no optimal structure of an intermediate complex. On the other hand in the lateral approach of the reactants, orbital factors favor attack of the double bond by one of the sulfonium sulfur atoms of the dication. This pattern corresponds to SN2-like substitution at sulfur atom as depicted in Figure 5. Using such a reactant orientation, the structure of intermediate jc-complex was successfully optimized. The distances between the reaction centers in the complex, that is, between the carbon atoms of the ethylene fragment and the nearest sulfur atom of the dication, are 2.74 and 2.96 A, respectively. [Pg.506]

Interaction of a carbonyl group with an electrophilic metal carbene would be expected to lead to a carbonyl ylide. In fact, such compounds have been isolated in recent years 14) the strategy comprises intramolecular generation of a carbonyl ylide whose substituent pattern guarantees efficient stabilization of the dipolar electronic structure. The highly reactive 1,3-dipolar species are usually characterized by [3 + 2] cycloaddition to alkynes and activated alkenes. Furthermore, cycloaddition to ketones and aldehydes has been reported for l-methoxy-2-benzopyrylium-4-olate 286, which was generated by Cu(acac)2-catalyzed decomposition of o-methoxycarbonyl-m-diazoacetophenone 285 2681... [Pg.190]


See other pages where Alkenes pattern is mentioned: [Pg.237]    [Pg.550]    [Pg.261]    [Pg.24]    [Pg.361]    [Pg.237]    [Pg.72]    [Pg.137]    [Pg.137]    [Pg.45]    [Pg.61]    [Pg.88]    [Pg.484]    [Pg.409]    [Pg.242]    [Pg.342]    [Pg.233]    [Pg.167]    [Pg.169]    [Pg.409]    [Pg.475]    [Pg.786]    [Pg.65]    [Pg.339]    [Pg.86]    [Pg.285]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



Asymmetric alkene substitution patterns

© 2024 chempedia.info