Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkanes small

Fig. 12.4. Vapor-to-water transfer data for saturated hydrocarbons as a function of accessible surface area, from [131]. Standard states are 1M ideal gas and solution phases. Linear alkanes (small dots) are labeled by the number of carbons. Cyclic compounds (large dots) are a = cyclooctane, b = cycloheptane, c = cyclopentane, d = cyclohexane, e = methylcyclopentane, f = methylcyclohexane, g = cA-l,2-dimethylcyclohexane. Branched compounds (circles) are h = isobutane, i = neopentane, j = isopentane, k = neohexane, 1 = isohexane, m = 3-methylpentane, n = 2,4-dimethylpentane, o = isooctane, p = 2,2,5-tri-metbylhexane. Adapted with permission from [74], Copyright 1994, American Chemical Society... Fig. 12.4. Vapor-to-water transfer data for saturated hydrocarbons as a function of accessible surface area, from [131]. Standard states are 1M ideal gas and solution phases. Linear alkanes (small dots) are labeled by the number of carbons. Cyclic compounds (large dots) are a = cyclooctane, b = cycloheptane, c = cyclopentane, d = cyclohexane, e = methylcyclopentane, f = methylcyclohexane, g = cA-l,2-dimethylcyclohexane. Branched compounds (circles) are h = isobutane, i = neopentane, j = isopentane, k = neohexane, 1 = isohexane, m = 3-methylpentane, n = 2,4-dimethylpentane, o = isooctane, p = 2,2,5-tri-metbylhexane. Adapted with permission from [74], Copyright 1994, American Chemical Society...
Paraffins consist mainly of straight chain alkanes, with a very small proportion of isoalkanes and cycloalkanes. Their freezing point is generally between 30°C and 70°C, the average molecular weight being around 350. When present, aromatics appear only in trace quantities. [Pg.285]

The small differences m stability between branched and unbranched alkanes result from an interplay between attractive and repulsive forces within a molecule (intramo lecular forces) These forces are nucleus-nucleus repulsions electron-electron repul sions and nucleus-electron attractions the same set of fundamental forces we met when... [Pg.86]

Alkenes resemble alkanes m most of their physical properties The lower molecular weight alkenes through 4 are gases at room temperature and atmospheric pressure The dipole moments of most alkenes are quite small Among the 4 isomers 1 butene cis 2 butene and 2 methylpropene have dipole moments m the 0 3-05 D range trans 2 butene has no dipole moment Nevertheless we can learn some things about alkenes by looking at the effect of substituents on dipole moments... [Pg.196]

The C—H bonds of hydrocarbons show little tendency to ionize and alkanes alkenes and alkynes are all very weak acids The acid dissociation constant for methane for exam pie IS too small to be measured directly but is estimated to be about 10 ° (pK 60)... [Pg.368]

A factor militating against the use of other adsorptives for pore size determination at the present time is the lack of reliable r-curves. The number of published isotherms of vapours such as benzene, carbon tetrachloride or the lower alkanes, or even such simple inorganic substances as carbon dioxide, on a reasonable number of well-defined non-porous adsorbents, is very small. [Pg.167]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Ca.ta.lysts, A small amount of quinoline promotes the formation of rigid foams (qv) from diols and unsaturated dicarboxyhc acids (100). Acrolein and methacrolein 1,4-addition polymerisation is catalysed by lithium complexes of quinoline (101). Organic bases, including quinoline, promote the dehydrogenation of unbranched alkanes to unbranched alkenes using platinum on sodium mordenite (102). The peracetic acid epoxidation of a wide range of alkenes is catalysed by 8-hydroxyquinoline (103). Hydroformylation catalysts have been improved using 2-quinolone [59-31-4] (104) (see Catalysis). [Pg.394]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

Figure 4.3 Cycloalkane strain energies, calculated by taking the difference between cycloalkane heat of combustion per CH2 and acyclic alkane heat of combustion per CH2, and multiplying by the number of CH2 units in a ring. Small and medium rings are strained, but cyclohexane rings are strain-free. Figure 4.3 Cycloalkane strain energies, calculated by taking the difference between cycloalkane heat of combustion per CH2 and acyclic alkane heat of combustion per CH2, and multiplying by the number of CH2 units in a ring. Small and medium rings are strained, but cyclohexane rings are strain-free.
The simplest synthetic polymers are those that result when an alkene is treated with a small amount of a radical as catalyst. Ethylene, for example, yields polyethylene, an enormous alkane that may have up to 200,000 monomer units incorporated into a gigantic hydrocarbon chain. Approximately 14 million tons per year of polyethylene is manufactured in the United States alone. [Pg.240]

Although reaction 6 is essentially a diffusion-controlled process for all kinds of substituents, the small differences observed in the rate constants through the series alkane-, amino- and alkoxy-sulfonyl chlorides have been attributed to the increased importance of polar effects to the transition state11. [Pg.1095]

Typically, the saponification is run with 10% sodium hydroxide solution in a reactor cascade at 95-98°C under stringent pH control. The saponification mixture is separated in a settler. The upper phase consists of alkanes with a small proportion of chloroalkanes, which is removed by oleum refining or dehydrochlorination and high-pressure hydrogenation. The refined alkanes can be recycled to the reactor. In the aqueous lower phase are alkanesulfonates, sodium chloride, and between 4 and 8 wt % hydrotropically dissolved alkanes. An optimal separation can be approached at 95 °C, and residence times of less than 60 min if Fe(III) ions are added and pH values of 3-5 are maintained. [Pg.157]

After cooling of the aqueous mixture to 5-10°C an upper viscous phase is separated, which contains 45-47% alkanesulfonates and 1.0-1.3% sodium chloride, while the lower phase is a 7-8% brine with a small quantity of alkane-monosulfonates but 1.5-2.0 wt % di- and polysulfonates. The hydrotropically dissolved alkanes (neutral oil) are found entirely in the upper phase. Because of the small density differences, the separation of the two phases needs 15-20 h. The lower phase can be separated by membrane technology [13]. [Pg.160]

The direct reaction of 1-alkenes with strong sulfonating agents leads to surface-active anionic mixtures containing both alkenesulfonates and hydroxyalkane sulfonates as major products, together with small amounts of disulfonate components, unreacted material, and miscellaneous minor products (alkanes, branched or internal alkenes, secondary alcohols, sulfonate esters, and sultones). Collectively this final process mixture is called a-olefinsulfonate (AOS). The relative proportions of these components are known to be an important determinant of the physical and chemical properties of the surfactant [2]. [Pg.430]

The amount of residual sulfonate ester remaining after hydrolysis can be determined by a procedure proposed by Martinsson and Nilsson [129], similar to that used to determine total residual saponifiables in neutral oils. Neutrals, including alkanes, alkenes, secondary alcohols, and sultones, as well as the sulfonate esters in the AOS, are isolated by extraction from an aqueous alcoholic solution with petroleum ether. The sulfonate esters are separated from the sultones by chromatography on a silica gel column. Each eluent fraction is subjected to saponification and measured as active matter by MBAS determination measuring the extinction of the trichloromethane solution at 642 nra. (a) Sultones. Connor et al. [130] first reported, in 1975, a very small amount of skin sensitizer, l-unsaturated-l,3-sultone, and 2-chloroalkane-l,3-sultone in the anionic surfactant produced by the sulfation of ethoxylated fatty alcohol. These compounds can also be found in some AOS products consequently, methods of detection are essential. [Pg.444]

Also in the 1940s sulfonates without aromatic substituents were prepared [3]. Secondary alkane- or paraffmsulfonates are widely used in liquid detergents. Olefmsulfonates [4] play only a small role in Europe but found their place in the United States for household and cleaning. [Pg.502]


See other pages where Alkanes small is mentioned: [Pg.128]    [Pg.6]    [Pg.144]    [Pg.128]    [Pg.6]    [Pg.144]    [Pg.662]    [Pg.2269]    [Pg.339]    [Pg.186]    [Pg.463]    [Pg.38]    [Pg.162]    [Pg.222]    [Pg.342]    [Pg.1543]    [Pg.29]    [Pg.67]    [Pg.1032]    [Pg.341]    [Pg.27]    [Pg.79]    [Pg.215]    [Pg.30]    [Pg.163]    [Pg.828]    [Pg.1215]    [Pg.68]    [Pg.42]    [Pg.275]    [Pg.129]    [Pg.71]    [Pg.203]    [Pg.664]    [Pg.856]    [Pg.864]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



© 2024 chempedia.info