Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline earth metal hydroxides catalytic reactions

Conjugate addition of methanol to a,/l-unsaturated carbonyl compounds forms a new carbon-oxygen bond to yield valuable ethers (Scheme 26). Kabashima et al. (12) reported the conjugate addition of methanol to 3-buten-2-one on alkaline oxides, hydroxides, and carbonates at a temperature of 273 K. The activities of the catalyst follow the order alkaline earth metal oxides > alkaline earth metal hydroxides > alkaline earth metal carbonates. All alkaline earth metal oxides exhibited high catalytic activities and, as in alcohol condensations and nitroaldol reactions, their catalytic activities were not much affected by exposure to CO2 and air. [Pg.266]

According to the Lewis theory, alkaline earth metal hydroxides are weaker bases than their oxides, the order of the strength of the basic sites being Ba(OH)2> SrO(OH)2 > Ca(OH)2 > Mg(OH)2. The hydroxides have been used recently as solid catalysts for organic transformations, such as the conjugate addition of methanol to a, S-unsaturated carbonyl compounds (12), cyanoethylation of alcohols (163,164), and transesterification reactions (166,167,171,172) which are described above. The extensive work of Sinisterra et al. (282) on the number and nature of sites and on the catalytic activity of the most basic alkali metal hydroxide, Ba(OH)2, is emphasized. It was found that commercial barium hydroxide octahydrate can be converted into... [Pg.287]

A. Catalytic Reactions on Alkaline Earth Metal Hydroxides A.l. Aldol Condensations... [Pg.289]

Further studies of the formose reaction have been reported. Alkaline-earth metal hydroxides initiated zero-order reactions at intermediate conversions of formaldehyde, and the formation of glyceraldehyde or tetroses and pentoses, etc., from formaldehyde in the presence of calcium hydroxide depended on whether or not glycolaldehyde was present. Self-condensation of formaldehyde in the presence of alkaline-earth metal hydroxides has also been studied in the absence and in the presence of a co-catalyst such as D-glucose and in the presence of glycolaldehyde. Self-condensation of formaldehyde in the presence of lead(ii) oxide appears to involve a soluble complex in which the lead atom co-ordinates with the carbonyl oxygen atom of formaldehyde. " The catalytic functions of calcium ion species in a homogeneous formose reaction and the distribution of products in a photochemical formose reaction have been investigated. [Pg.13]

This review is a summary of the work done and potential opportunities for inexpensive and easily accessible base catalysts, such as alkaline earth metal oxides and hydroxides, as well as alkali metals and oxides supported on alkaline earth metal oxides. Preparation methods of these materials, as well as characterization of basic sites are reported. An extensive review of their catalytic applications for a variety of organic transformations including isomerization, carbon-carbon and carbon-oxygen bond formation, and hydrogen transfer reactions is presented. [Pg.239]

Peterson and Scarrah 165) reported the transesterification of rapeseed oil by methanol in the presence of alkaline earth metal oxides and alkali metal carbonates at 333-336 K. They found that although MgO was not active for the transesterification reaction, CaO showed activity, which was enhanced by the addition of MgO. In contrast, Leclercq et al. 166) showed that the methanolysis of rapeseed oil could be carried out with MgO, although its activity depends strongly on the pretreatment temperature of this oxide. Thus, with MgO pre-treated at 823 K and a methanol to oil molar ratio of 75 at methanol reflux, a conversion of 37% with 97% selectivity to methyl esters was achieved after 1 h in a batch reactor. The authors 166) showed that the order of activity was Ba(OH)2 > MgO > NaCsX zeolite >MgAl mixed oxide. With the most active catalyst (Ba(OH)2), 81% oil conversion, with 97% selectivity to methyl esters after 1 h in a batch reactor was achieved. Gryglewicz 167) also showed that the transesterification of rapeseed oil with methanol could be catalyzed effectively by basic alkaline earth metal compounds such as calcium oxide, calcium methoxide, and barium hydroxide. Barium hydroxide was the most active catalyst, giving conversions of 75% after 30 min in a batch reactor. Calcium methoxide showed an intermediate activity, and CaO was the least active catalyst nevertheless, 95% conversion could be achieved after 2.5 h in a batch reactor. MgO and Ca(OH)2 showed no catalytic activity for rapeseed oil methanolysis. However, the transesterification reaction rate could be enhanced by the use of ultrasound as well as by introduction of an appropriate co-solvent such as THF to increase methanol solubility in the phase containing the rapeseed oil. [Pg.267]

Alkaline earth metal oxides and hydroxides have also been tested in transesterification reactions. Ca(OH)2 did not show significant catalytic activity in the transesterification of rapeseed oil with methanol at conditions normally used to prepare biodiesel.Peterson et al. reported relative alcoholysis activities of a series of supported CaO catalysts under near reflux conditions of methanol-rapeseed oil mixtures at 6 1 molar ratios.Among the catalysts tested, the most active was CaO (9.2 wt% CaO) on MgO. For instance, in a 12 h reaction the total oil conversion using this catalyst was over 95%, similar to... [Pg.78]

Reaction over Base Catalysts. - The reaction of HCHO with acetic acid to form acrylic acid was studied by Vitcha and Sims using various supported metal hydroxides as catalysts. The best catalytic performances are obtained with alkaline earth metal cation exchanged Decalso (a synthetic sodium alimonosilicate), though silica-supported hydrox-... [Pg.154]

Whereas the appropriate forms of zeolites and related solids are widely used in acid-catalysed industrial processes, microporous solids are not currently of importance in commercial base-catalysed conversions. Instead, high-surface-area forms of alkali metal and alkaline earth metal oxides and hydroxides, often supported on alumina, fulfil the need for solid base catalysts. Nevertheless, interest remains in characterising basic sites in cationic zeolites and in developing routes to more strongly basic sites in microporous solids." Routes to the latter include the introduction of metallic forms of alkali metals or nanoparticles of metal oxides and the partial replacement of amine groups at the sites of framework oxygen atoms. Porous solid bases have been shown to exhibit a varied catalytic chemistry, particularly for reactions such as dehydrogenations,... [Pg.392]

Basic oxides of metals such as Co, Mn, Fe, and Cu catalyze the decomposition of chlorate by lowering the decomposition temperature. Consequendy, less fuel is needed and the reaction continues at a lower temperature. Cobalt metal, which forms the basic oxide in situ, lowers the decomposition of pure sodium chlorate from 478 to 280°C while serving as fuel (6,7). Composition of a cobalt-fueled system, compared with an iron-fueled system, is 90 wt % NaClO, 4 wt % Co, and 6 wt % glass fiber vs 86% NaClO, 4% Fe, 6% glass fiber, and 4% BaO. Initiation of the former is at 270°C, compared to 370°C for the iron-fueled candle. Cobalt hydroxide produces a more pronounced lowering of the decomposition temperature than the metal alone, although the water produced by decomposition of the hydroxide to form the oxide is thought to increase chlorine contaminate levels. Alkaline earths and transition-metal ferrates also have catalytic activity and improve chlorine retention (8). [Pg.485]


See other pages where Alkaline earth metal hydroxides catalytic reactions is mentioned: [Pg.98]    [Pg.123]    [Pg.287]    [Pg.312]    [Pg.85]    [Pg.359]    [Pg.493]    [Pg.121]    [Pg.429]    [Pg.490]    [Pg.31]   
See also in sourсe #XX -- [ Pg.289 , Pg.290 , Pg.291 , Pg.292 , Pg.293 ]




SEARCH



Alkaline earth metals

Alkaline earth metals hydroxides

Alkaline-earth hydroxides, reactions

Catalytic metals

Hydroxides reactions

Metal alkaline

Metal hydroxides

Metal hydroxides reactions

Metallic hydroxide

© 2024 chempedia.info