Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali magnesium

In 1834, A. J. Balard prepd solutions of various hypochlorites by mixing aq hypochlorous acid with alkalies, magnesium, copper oxide, zinc oxide etc, avoiding an excess of acid J. L. Gay-Lussac dissolved two mols of chlorine monoxide, C120, in a solution containing 1 mol of K20 and then evaporated the resulting solution in vacuo. This gave solid potassium hypochlorite... [Pg.260]

Stein, T.S., Jiang, J., Kauppila, W.E., Kwan, C.K., Li, H., Surdutovich, A. and Zhou, S. (1996). Measurements of total and (or) positronium-formation cross sections for positrons scattered by alkali, magnesium and hydrogen atoms. Can. J. Phys. 74 313-333. [Pg.442]

While caustic soda and lime have traditionally been used for many years to achieve the above precipitation reaction, magnesium hydroxide is gaining popularity as a replacement for these two alkalis. Magnesium hydroxide has a number of advantages over lime and caustic soda, and these are further discussed below. [Pg.157]

Direct Reaction in Inert Atmosphere (Argon or Nitrogen). Direct reaction with alcohols with evolution of hydrogen gas and formation of metal alkoxides is possible only for the most electropositive metals such as alkali, magnesium and alkaline earth, rare earth metals and aluminum. [Pg.4]

A 1987 process [32] produced CFTE by dechlorination in the vapor phase of 1,1,2-trichloro-1,2,2-trifluoroethane with hydrogen in the presence of an alkali magnesium fluoride catalyst. The reaction took place at 175°C with this catalyst. Reactivation of the catalyst took place by passing oxygen, air, or another gas mixture with oxygen over the catalyst at a temperature in the range of 400-600°C. [Pg.58]

The alkali metals of Group I are found chiefly as the chlorides (in the earth s crust and in sea water), and also as sulphates and carbonates. Lithium occurs as the aluminatesilicate minerals, spodimene and lepidolite. Of the Group II metals (beryllium to barium) beryllium, the rarest, occurs as the aluminatesilicate, beryl-magnesium is found as the carbonate and (with calcium) as the double carbonate dolomite-, calcium, strontium and barium all occur as carbonates, calcium carbonate being very plentiful as limestone. [Pg.122]

Chemically, carbon dioxide is not very reactive, and it is often used as an inactive gas to replace air when the latter might interact with a substance, for example in the preparation of chromium II) salts (p. 383). Very reactive metals, for example the alkali metals and magnesium can, however, continue to bum in carbon dioxide if heated sufficiently, for example... [Pg.182]

Such water, and also that containing salts of multipositive metals, (usually sulphates), is said to be hard since it does not readily produce a lather with soap. Experiments with alkali metal salts can be performed to verify that the hardness is due to the presence of the multipositive metal ions and not to any of the anions present. The hardness due to calcium and magnesium hydrogencarbonates is said to be temporary since it can be removed by boiling ... [Pg.273]

The chromates of the alkali metals and of magnesium and calcium are soluble in water the other chromates are insoluble. The chromate ion is yellow, but some insoluble chromates are red (for example silver chromate, Ag2Cr04). Chromates are often isomorph-ous with sulphates, which suggests that the chromate ion, CrO has a tetrahedral structure similar to that of the sulphate ion, SO4 Chromates may be prepared by oxidising chromium(III) salts the oxidation can be carried out by fusion with sodium peroxide, or by adding sodium peroxide to a solution of the chromium(IIl) salt. The use of sodium peroxide ensures an alkaline solution otherwise, under acid conditions, the chromate ion is converted into the orange-coloured dichromate ion ... [Pg.378]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

The acetoplienono may be recovered by washing the benzene solution with dilute alkali, drying with anhy drous magnesium sulphate and distilling the fractien b.p. 108-J05° is collected. [Pg.567]

Methyl p-toluenesulphonate. This, and other alkyl esters, may be prepared in a somewhat similar manner to the n-butyl ester with good results. Use 500 g. (632 ml.) of methyl alcohol contained in a 1 litre three-necked or bolt-head flask. Add 500 g. of powdered pure p-toluene-sulphonyl chloride with mechanical stirring. Add from a separatory funnel 420 g. of 25 per cent, sodium hydroxide solution drop by drop maintain the temperature of the mixture at 23-27°. When all the alkali has been introduced, test the mixture with litmus if it is not alkaline, add more alkali until the mixture is neutral. Allow to stand for several hours the lower layer is the eater and the upper one consists of alcohol. Separate the ester, wash it with water, then with 4 per cent, sodium carbonate solution and finally with water. Dry over a little anhydrous magnesium sulphate, and distil under reduced pressure. Collect the methyl p-toluenesulphonate at 161°/10 mm. this solidifies on cooling and melts at 28°. The yield is 440 g. [Pg.825]

Sulfides All sulfides (except alkali metals. ammonium, magnesium, calcium, and bar-... [Pg.1182]

MetaUic ions are precipitated as their hydroxides from aqueous caustic solutions. The reactions of importance in chlor—alkali operations are removal of magnesium as Mg(OH)2 during primary purification and of other impurities for pollution control. Organic acids react with NaOH to form soluble salts. Saponification of esters to form the organic acid salt and an alcohol and internal coupling reactions involve NaOH, as exemplified by reaction with triglycerides to form soap and glycerol,... [Pg.514]

The cells are fed semicontinuously and produce both magnesium and chlorine (see Alkali and chlorine products). The magnesium collects in a chamber at the front of the cell, and is periodically pumped into a cmcible car. The cmcible is conveyed to the cast house, where the molten metal is transferred to holding furnaces from which it is cast into ingots, or sent to alloying pots and then cast. The ingot molds are on continuous conveyors. [Pg.316]

Hydroxyethyl cellulose (HEC), a nonionic thickening agent, is prepared from alkali cellulose and ethylene oxide in the presence of isopropyl alcohol (46). HEC is used in drilling muds, but more commonly in completion fluids where its acid-degradable nature is advantageous. Magnesium oxide stabilizes the viscosity-building action of HEC in salt brines up to 135°C (47). HEC concentrations are ca 0.6—6 kg/m (0.2—21b/bbl). [Pg.179]

Metals do not generally react with vitreous siUca below 1000°C or their melting point, whichever is lower. Exceptions are alurninum, magnesium, and alkah metals. Aluminum readily reduces siUca at 700—800°C. Alkali metal vapors attack at temperatures as low as 200°C. Sodium vapor attack involves a diffusion of sodium into the glass, followed by a reduction of the siUca. [Pg.501]

Vanadium is resistant to attack by hydrochloric or dilute sulfuric acid and to alkali solutions. It is also quite resistant to corrosion by seawater but is reactive toward nitric, hydrofluoric, or concentrated sulfuric acids. Galvanic corrosion tests mn in simulated seawater indicate that vanadium is anodic with respect to stainless steel and copper but cathodic to aluminum and magnesium. Vanadium exhibits corrosion resistance to Hquid metals, eg, bismuth and low oxygen sodium. [Pg.382]

Further dechlorination may occur with the formation of substituted diphenyhnethanes. If enough aluminum metal is present, the Friedel-Crafts reactions involved may generate considerable heat and smoke and substantial amounts of hydrogen chloride, which reacts with more aluminum metal, rapidly forming AlCl. The addition of an epoxide inhibits the initiation of this reaction by consuming HCl. Alkali, alkaline-earth, magnesium, and zinc metals also present a potential reactivity hazard with chlorinated solvents such as methylene chloride. [Pg.519]

Liquid carboxylic acids are first freed from neutral and basic impurities by dissolving them in aqueous alkali and extracting with diethyl ether. (The pH of the solution should be at least three units above the pKg of the acid, see pK in Chapter 1). The aqueous phase is then acidified to a pH at least three units below the pK of the acid and again extracted with ether. The extract is dried with magnesium sulfate or sodium sulfate and the ether is distilled off The acid is fractionally distilled through an efficient column. It can be further purified by... [Pg.61]

Certain metals/alloys - the alkali metals (lidiium, potassium, sodium) and even some metals/ alloys which undergo slow oxidation or are rendered passive in bulk form but which, in the finely divided state, inflame immediately when exposed to oxygen (e.g. aluminium, magnesium, zirconium). [Pg.185]

Alkali and alkaline earth metals, e.g. sodium, potassium lithium, magnesium, calcium, powdered aluminium Anhydrous ammonia Ammonium nitrate... [Pg.233]

The proportion of hydrochloric acid in the mobile phase was not to exceed 20%, so that complex formation did not occur and zone structure was not adversely affected. An excess of accompanying alkaline earth metal ions did not interfere with the separation but alkali metal cations did. The hthium cation fluoresced blue and lay at the same height as the magnesium cation, ammonium ions interfered with the calcium zone. [Pg.312]


See other pages where Alkali magnesium is mentioned: [Pg.106]    [Pg.203]    [Pg.303]    [Pg.132]    [Pg.51]    [Pg.113]    [Pg.106]    [Pg.203]    [Pg.303]    [Pg.132]    [Pg.51]    [Pg.113]    [Pg.21]    [Pg.359]    [Pg.599]    [Pg.812]    [Pg.894]    [Pg.5]    [Pg.445]    [Pg.288]    [Pg.81]    [Pg.321]    [Pg.335]    [Pg.198]    [Pg.581]    [Pg.232]    [Pg.298]    [Pg.705]    [Pg.32]    [Pg.238]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



ALKALI ALKALINE EARTH METALS magnesium used

Alkali Metals and Magnesium

Alkali metals magnesium

Magnesium chloride-alkali chlorides

Magnesium chloride-alkali chlorides molten

© 2024 chempedia.info