Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali dissociation

Neutral molecules of many salts, acids, and alkalis dissociate into ions (cations and anions) in water, forming aqueous electrolyte solutions. For example, NaCl dissociates with the formation of a cation Na+ and an anion CF. Even more, if we assume water completely pure without any salts, acids, and so on, then the water molecule itself, H2O, also dissociates according to the following dissociation reaction H2O <-4 H+ + OH. ... [Pg.17]

The sodium ethanoate which is largely dissociated, serves as a source of ethanoate ions, which combine with any hydrogen ions which may be added to the solution to yield more of the acid. The addition of hydrogen ions has therefore much less effect on such a solution than it would have on water. In a similar manner, the solution of the salt of a strong acid and a weak base, in the presence of a weak base, has a pH that is insensitive to additions of alkali. [Pg.69]

Mortensen J J, Hammer B and Norskov J K 1998 Alkali promotion of N2 dissociation over Ru(OOOI) Phys. Rev. Lett. 80 4333... [Pg.2235]

Strong and Weak Bases Just as the acidity of an aqueous solution is a measure of the concentration of the hydronium ion, H3O+, the basicity of an aqueous solution is a measure of the concentration of the hydroxide ion, OH . The most common example of a strong base is an alkali metal hydroxide, such as sodium hydroxide, which completely dissociates to produce the hydroxide ion. [Pg.141]

Alkalis tend to be basic compounds which dissociate in water to produce hydroxyl ions, OH thus ... [Pg.27]

This review is structured as follows. In the next section we present the theory for adsorbates that remain in quasi-equilibrium throughout the desorption process, in which case a few macroscopic variables, namely the partial coverages 0, and their rate equations are needed. We introduce the lattice gas model and discuss results ranging from non-interacting adsorbates to systems with multiple interactions, treated essentially exactly with the transfer matrix method, in Sec. II. Examples of the accuracy possible in the modehng of experimental data using this theory, from our own work, are presented for such diverse systems as multilayers of alkali metals on metals, competitive desorption of tellurium from tungsten, and dissociative... [Pg.440]

Many of the ionic fiuorides of M, M and M dissolve to give highly conducting solutions due to ready dissociation. Some typical values of the solubility of fiuorides in HF are in Table 17.11 the data show the expected trend towards greater solubility with increase in ionic radius within the alkali metals and alkaline earth metals, and the expected decrease in solubility with increase in ionic charge so that MF > MF2 > MF3. This is dramatically illustrated by AgF which is 155 times more soluble than AgF2 and TIF which is over 7000 times more soluble than TIF3. [Pg.817]

On the basis of the dissociation constant values, it seems sensible to conclude that, in these moderately basic carbinolamines, the hydrogen atom of the hydroxyl group is suflQciently acid to be eliminated under the influence of an alkali and by its transfer to the nitrogen atom of the mesomeric anion, the formation of the amino-aldehyde form may result. Instead of the amino-aldehyde, however, the corresponding bimolecular ether (15a-c) can be obtained. " It can be concluded that the formation of the bimolecular ether (S l or 8 2 mechanism) and the formation of the amino-aldehyde (B-SeI or B-Se2 mechanism) are competitive reactions. It seems probable that where the first reaction can occur the latter one is pushed into the background. The triple tautomeric system postulated by Gadamer... [Pg.178]

In the meantime, we believe that the best prediction of the toxicity of an ionic liquid of type [cation] [anion] can be derived from the often well known toxicity data for the salts [cation]Cl and Na[anion]. Since almost all chemistry in nature takes place in aqueous media, the ions of the ionic liquid can be assumed to be present in dissociated form. Therefore, a reliable prediction of ionic liquids HSE data should be possible from a combination of the loiown effects of the alkali metal and chloride salts. Already from these, very preliminary, studies, it is clear that HSE considerations will be an important criterion in selection and exclusion of specific ionic liquid candidates for future large-scale, technical applications. [Pg.30]

The polymerization of acrylamide in aqueous solutions in the presence of alkaline agents leads to the ob-tainment of partially hydrolyzed polyacrylamide. The polymerization process under the action of free radicals R (formed on the initiator decomposition) in the presence of OH ion formed on the dissociation of an alkali addition (NaOH, KOH, LiOH), and catalyzing the hydrolysis can be described by a simplified scheme (with Me = Na, K, Li) ... [Pg.66]

At higher concentrations the Raman spectra of aqueous solutions of alkali nitrates and of nitric acid have been investigated. Nitric acid was found to be incompletely dissociated, though for the alkali nitrates no evidence of incomplete dissociation was found. Since accurate measurements on solutions of nitric acid have not been made at concentrations below 4.0 molar, it is not certain how the extrapolation to infinite... [Pg.139]

Weak acids with weak bases. The titration of a weak acid and a weak base can be readily carried out, and frequently it is preferable to employ this procedure rather than use a strong base. Curve (c) in Fig. 13.2 is the titration curve of 0.003 M acetic acid with 0.0973 M aqueous ammonia solution. The neutralisation curve up to the equivalence point is similar to that obtained with sodium hydroxide solution, since both sodium and ammonium acetates are strong electrolytes after the equivalence point an excess of aqueous ammonia solution has little effect upon the conductance, as its dissociation is depressed by the ammonium salt present in the solution. The advantages over the use of strong alkali are that the end point is easier to detect, and in dilute solution the influence of carbon dioxide may be neglected. [Pg.526]

However, the addition of even small volumes of alkali leads to the screening of these groups, with a subsequent decrease of the proton dissociation energy at low dissociation degrees. This complies with the salt effect (Fig. 15). [Pg.30]

A classical example of promotion is the use of alkalis (K) on Fe for the ammonia synthesis reaction. Coadsorbed potassium (in the form of K20) significantly enhances the dissociative adsorption of N2 on the Fe surface, which is the crucial and rate limiting step for the ammonia synthesis5 (Fig. 2.1). [Pg.15]

The molecular chemisorption of CO on various alkali-modified metal surfaces has been studied extensively in the literature. It is well established that alkali modification of the metal surface enhances both the strength of molecular chemisorption and the tendency towards dissociative chemisorption. This effect can be attributed to the strongly electropositive character of the alkali, which results in donation of electron density from the alkali to the metal and then to the adsorbed CO, via increased backdonation into the... [Pg.38]

For alkali modified noble and sp-metals (e.g. Cu, Al, Ag and Au), where the CO adsorption bond is rather weak, due to negligible backdonation of electronic density from the metal, the presence of an alkali metal has a weaker effect on CO adsorption. A promotional effect in CO adsorption (increase in the initial sticking coefficient and strengthening of the chemisorptive CO bond) has been observed for K- or Cs-modified Cu surfaces as well as for the CO-K(or Na)/Al(100) system.6,43 In the latter system dissociative adsorption of CO is induced in the presence of alkali species.43... [Pg.39]

The alkali promotion of CO dissociation is substrate-specific, in the sense that it has been observed only for a restricted number of substrates where CO does not dissociate on the clean surface, specifically on Na, K, Cs/Ni( 100),38,47,48 Na/Rh49 and K, Na/Al(100).43 This implies that the reactivity of the clean metal surface for CO dissociation plays a dominant role. The alkali induced increase in the heat of CO adsorption (not higher than 60 kJ/mol)50 and the decrease in the activation energy for dissociation of the molecular state (on the order of 30 kJ/mol)51 are usually not sufficient to induce dissociative adsorption of CO on surfaces which strongly favor molecular adsorption (e. g. Pd or Pt). [Pg.42]

Alkali promoters are often used for altering the catalytic activity and selectivity in Fischer-Tropsch synthesis and the water-gas shift reaction, where C02 adsorption plays a significant role. Numerous studies have investigated the effect of alkalis on C02 adsorption and dissociation on Cu, Fe, Rh, Pd, A1 and Ag6,52 As expected, C02 always behaves as an electron acceptor. [Pg.42]

Similar to the case of CO, the dissociation propensity of NO depends largely on the substrate, following the same general trends. Alkali introduction on metal substrates promotes the dissociative adsorption of NO, both by weakening the N-O intramolecular bond and by stabilizing the molecular state which acts as a precursor for dissociation. [Pg.45]


See other pages where Alkali dissociation is mentioned: [Pg.235]    [Pg.310]    [Pg.321]    [Pg.235]    [Pg.310]    [Pg.321]    [Pg.30]    [Pg.69]    [Pg.346]    [Pg.2]    [Pg.74]    [Pg.200]    [Pg.407]    [Pg.544]    [Pg.66]    [Pg.74]    [Pg.83]    [Pg.114]    [Pg.424]    [Pg.445]    [Pg.781]    [Pg.1152]    [Pg.106]    [Pg.172]    [Pg.46]    [Pg.274]    [Pg.527]    [Pg.208]    [Pg.163]    [Pg.35]    [Pg.37]    [Pg.42]    [Pg.42]    [Pg.43]    [Pg.45]   
See also in sourсe #XX -- [ Pg.389 , Pg.390 ]




SEARCH



© 2024 chempedia.info