Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aliphatic polyesters properties

Table 6. Properties of Aromatic—Aliphatic Polyester Resins ... Table 6. Properties of Aromatic—Aliphatic Polyester Resins ...
Aliphatic polyesters are low-melting (40-80°C) semicrystalline polymers or viscous fluids and present inferior mechanical properties. Notable exceptions are poly (a-hydroxy acid)s and poly (ft -hydroxy acid)s. [Pg.32]

C and is easily processable, whereas the homopolymers do not melt before the onset of thermal degradation, at temperatures as high as 500°C.73,74 Varying copolymer composition permits the adjustment of melting temperature and of other properties (e.g., solubility) to desired values. This method is frequently used for aliphatic and aromatic-aliphatic polyesters as well. [Pg.36]

Structure and Properties of Important Polyesters 2.2.2.1 Aliphatic Polyesters... [Pg.40]

PET, PTT, and PBT have similar molecular structure and general properties and find similar applications as engineering thermoplastic polymers in fibers, films, and solid-state molding resins. PEN is significantly superior in terms of thermal and mechanical resistance and barrier properties. The thermal properties of aromatic-aliphatic polyesters are summarized in Table 2.6 and are discussed above (Section 2.2.1.1). [Pg.44]

Aliphatic hyperbranched polyesters, 56 Aliphatic isocyanate adducts, 202 Aliphatic isocyanates, 210, 225 Aliphatic polyamides, 138 Aliphatic polyesteramides, 56 Aliphatic polyesters, 18, 20, 29, 32, 87 degradable, 85 hyperbranched, 114-116 melting points of, 33, 36 structure and properties of, 40-44 syntheses of, 95-101 thermal degradation of, 38 unsubstituted and methyl-substituted, 36-38... [Pg.576]

Mechanical properties. See also Dynamic mechanical analysis (DMA) of polyamides, 138 of polyester LCPs, 52 of polyurethanes, 242-244 of semicrystalline aromatic-aliphatic polyesters, 45 Mechanical recycling, 208 Medical applications, for polyurethanes, 207... [Pg.588]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

Aliphatic polyesters based on monomers other than a-hydroxyalkanoic acids have also been developed and evaluated as drug delivery matrices. These include the polyhydroxybutyrate and polyhydroxy valerate homo- and copolymers developed by Imperial Chemical Industries (ICI) from a fermentation process and the polycaprolactones extensively studied by Pitt and Schindler (14,15). The homopolymers in these series of aliphatic polyesters are hydrophobic and crystalline in structure. Because of these properties, these polyesters normally have long degradation times in vivo of 1-2 years. However, the use of copolymers and in the case of polycaprolactone even polymer blends have led to materials with useful degradation times as a result of changes in the crystallinity and hydrophobicity of these polymers. An even larger family of polymers based upon hydroxyaliphatic acids has recently been prepared by bacteria fermentation processes, and it is anticipated that some of these materials may be evaluated for drug delivery as soon as they become commercially available. [Pg.24]

In 2002, Lee et al. [51] reported the biodegradation of aliphatic polyester-based nanocomposites under compost. Figure 9.13(A, B) represent the clay content dependence of biodegradation of APES-based nanocomposites prepared with two different types of MMT clays. They assumed that the retardation of biodegradation was due to the improvement of the barrier properties of the aliphatic APSE after nanocomposite preparation with clay. However, there are no data about permeability. [Pg.290]

These representative aliphatic polyesters are often used in copolymerized form in various combinations, for example, poly(lactide-co-glycolide) (PLGA) [66-68] and poly(lactide-co-caprolactone) [69-73], to improve degradation rates, mechanical properties, processability, and solubility by reducing crystallinity. Other monomers such as 1,4-dioxepan-5-one (DXO) [74—76], 1,4-dioxane-2-one [77], and trimethylene carbonate (TMC) [28] (Fig. 2) have also been used as comonomers to improve the hydrophobicity of the aliphatic polyesters as well as their degradability and mechanical properties. [Pg.72]

Several applications of hyperbranched polymers as precursors for synthesis of crosslinked materials have been reported [91-97] but systematic studies of crosslinking kinetics, gelation, network formation and network properties are still missing. These studies include application of hyperbranched aliphatic polyesters as hydroxy group containing precursors in alkyd resins by which the hardness of alkyd films was improved [94], Several studies involved the modification of hyperbranched polyesters to introduce polymerizable unsaturated C=C double bonds (maleate or acrylic groups). A crosslinked network was formed by free-radical homopolymerization or copolymerization. [Pg.142]

The dilution properties of hyperbranched polymers also differ from those of linear polymers. In a comparison between two alkyd resin systems, where one was a conventional high solid alkyd and the other based on a hyperbranched aliphatic polyester, the conventional high solid alkyd was seen to exhibit a higher viscosity [113]. A more rapid decrease in viscosity with solvent content was noted for the hyperbranched alkyd when the polymers were diluted. [Pg.21]

A study of the PVT properties of hyperbranched aliphatic polyesters by Hult et al. [ 117] showed that these polyesters were dense structures with smaller thermal expansion coefficients and lower compressibility compared to some linear polymers. [Pg.22]

Hult A, Malmstrom E, Johansson M (1996) Hyperhranched aliphatic polyesters. In Salamone JC (ed) The polymeric materials encyclopedia synthesis, properties and applications. CRC Press, Boca Raton, Florida... [Pg.34]

Pitt et al. [65], and more recently, Albertsson et al. [73], have prepared chemically cross-linked aliphatic polyesters by ROP of the corresponding cyclic ester monomers in the presence of Y,y -bis(e-caprolactone)-type comonomers (Scheme 17). The cross-linked films displayed different swelling behaviors, degradability, and elastomeric properties depending on the nature of the lactone and composition of the comonomers feed. [Pg.27]

This method exclusively yields macrocyclic polyesters without any competition with linear polymers. Furthermore, the coordination-insertion ROP process can take part in a more global construction set, ultimately leading to the development of new polymeric materials with versatile and original properties. Note that other types of efficient coordination initiators, i.e., rare earth and yttrium alkoxides, are more and more studied in the framework of the controlled ROP of lactones and (di)lactones [126-129]. These polymerizations are usually characterized by very fast kinetics so as one can expect to (co)polymerize monomers known for their poor reactivity with more conventional systems. Those initiators should extend the control that chemists have already got over the structure of aliphatic polyesters and should therefore allow us to reach again new molecular architectures. It is also important to insist on the very promising enzyme-catalyzed ROP of (di)lactones which will more likely pave the way to a new kind of macromolecular control [6,130-132]. [Pg.56]

At the end of the 1990s, BASF commercialized Ecoflex F, a completely biodegradable statistical copolyester based on the fossil monomers 1,4-butanediol (BDO), adipic acid and terephthalic acid (see Fig. 3). Ecoflex F combines the good biodegradability known from aliphatic polyesters with the good mechanical properties of aromatic polyesters. [Pg.104]

Aliphatic polyesters occupy a key position in the field of polymer science because they exhibit the remarkable properties of biodegradability and biocompatibihty, which opens up a wide range of applications as environmentally friendly thermoplastics and biomaterials. Three different mechanisms of polymerization can be implemented to synthesize aliphatic polyesters (1) the ring-opening polymerization (ROP) of cyclic ketene acetals, (2) the step-growth polymerization of lactones, and (3) the ROP of lactones (Fig. 1). [Pg.174]

Another interesting example of lactones are the p-hydroxyalkanoates, whose ROP affords poly(p-hydroxyalkanoate)s (PHAs), a class of aliphatic polyesters naturally produced by bacteria (Fig. 3) [12, 13]. Poly(3-(R)-hydroxybutyrate) (PHB) is a typical example. PHB is a stiff thermoplastic material with relatively poor impact strength, but the incorporation of other monomers can improve the mechanical properties. [Pg.176]

The polymerization of substituted lactones is an attractive strategy for extending the range of aliphatic polyesters and for tailoring important properties such as biodegradation rate, bioadherence, crystallinity, hydrophilicity, and mechanical properties [100]. Moreover, the substituent can bear a functional group, which can be very useful for the covalent attachment of drugs, probes, or control units. [Pg.195]

A change of architecture is another route that enables diversification of the properties of aliphatic polyesters. This review will focus on star-shaped, graft, macrocyclic, and crosslinked aliphatic polyesters. It must be noted that the ROP of lactones has been combined with several other polymerization mechanisms such as ROP of other heterocyclic monomers, ionic polymerization, ROMP, and radical polymerization. Nevertheless, this review will not cover these examples and will focus on polymers exclusively made up of poly(lactone)s. [Pg.199]


See other pages where Aliphatic polyesters properties is mentioned: [Pg.578]    [Pg.578]    [Pg.1]    [Pg.18]    [Pg.31]    [Pg.40]    [Pg.41]    [Pg.42]    [Pg.45]    [Pg.48]    [Pg.56]    [Pg.28]    [Pg.226]    [Pg.69]    [Pg.71]    [Pg.75]    [Pg.77]    [Pg.77]    [Pg.79]    [Pg.223]    [Pg.153]    [Pg.238]    [Pg.108]    [Pg.24]    [Pg.223]    [Pg.3]    [Pg.46]    [Pg.249]    [Pg.185]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Aliphatic polyesters

© 2024 chempedia.info