Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reactions 2,3-anti products

When the aldol reaction is carried Wt under thermodynamic conditions, the product selectivity is often not as high as under kinetic conditions. All the regioisomeric and stereoisomeric enolates may participate as nucleophiles. The adducts can return to reactants, and so the difference in stability of the stereoisomeric anti and syn products will determine the product composition. [Pg.469]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

A syn-selective asymmetiic nih o-aldol reaction has been reported for structurally simple aldehydes using a new catalyst generated from 6,6-bis[(tiiethylsilyl)ethynyl]BINOL (g in Scheme 3.18). The syn selectivity in the nitro-aldol reaction can be explained by steric hindrance in the bicyclic transition state as can be seen in Newman projection. In the favored h ansition state, the catalyst acts as a Lewis acid and as a Lewis base at different sites. In conbast, the nonchelation-controlled transition state affords anti product with lower ee. This stereoselective nitro-aldol reaction has been applied to simple synthesis of t/ireo-dihydrosphingosine by the reduction of the nitro-aldol product with H2 and Pd-C (Eq. 3.79). [Pg.61]

Summary of the Relationship between Diastereoselectivity and the Transition Structure. In this section we considered simple diastereoselection in aldol reactions of ketone enolates. Numerous observations on the reactions of enolates of ketones and related compounds are consistent with the general concept of a chairlike TS.35 These reactions show a consistent E - anti Z - syn relationship. Noncyclic TSs have more variable diastereoselectivity. The prediction or interpretation of the specific ratio of syn and anti product from any given reaction requires assessment of several variables (1) What is the stereochemical composition of the enolate (2) Does the Lewis acid promote tight coordination with both the carbonyl and enolate oxygen atoms and thereby favor a cyclic TS (3) Does the TS have a chairlike conformation (4) Are there additional Lewis base coordination sites in either reactant that can lead to reaction through a chelated TS Another factor comes into play if either the aldehyde or the enolate, or both, are chiral. In that case, facial selectivity becomes an issue and this is considered in Section 2.1.5. [Pg.78]

Scheme 2.2 illustrates several examples of the Mukaiyama aldol reaction. Entries 1 to 3 are cases of addition reactions with silyl enol ethers as the nucleophile and TiCl4 as the Lewis acid. Entry 2 demonstrates steric approach control with respect to the silyl enol ether, but in this case the relative configuration of the hydroxyl group was not assigned. Entry 4 shows a fully substituted silyl enol ether. The favored product places the larger C(2) substituent syn to the hydroxy group. Entry 5 uses a silyl ketene thioacetal. This reaction proceeds through an open TS and favors the anti product. [Pg.86]

In 2000, Morken et al. reported the first examples of catalytic asymmetric reductive aldol reactions [21]. Using Rh(BINAP) (5mol%) as catalyst and Et2MeSiH as reductant, the syn-selective (1.7 1) coupling of benzalde-hyde and methyl acrylate produced the diastereomers 35-syn and 35-anti in 91% ee and 88% ee, respectively. Using phenyl acrylate as the nucleophilic partner, a favorable yield of 72% was obtained for the aldol product 36 (Scheme 12). Several aldehydes were examined, which exhibit higher levels of syn-selectivity. Expanding the scope of substrates and acrylates under... [Pg.121]

The stereochemical outcome of the Mukaiyama reaction can be controlled by the type of Lewis acid used. With bidentate Lewis acids the aldol reaction led to the anti products through a Cram chelate control [366]. Alternatively, the use of a monoden-tate Lewis acid in this reaction led to the syn product through an open Felkin-Anh... [Pg.156]

Diastereoselective catalytic nitro-aldol reactions of optically active iV-phthaloyl-L-phenyl-alanal with nitromethane in the presence of LLB proceed with high diastereoselectivity (anti syn = 99 1) as shown in Eq. 3.76.125 The product is converted via the Nef reaction into (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid, which is a subunit of the HIV-protease inhibitor... [Pg.58]

Ono and Kamimura have found a very simple method for the stereo-control of the Michael addition of thiols, selenols, or alcohols. The Michael addition of thiolate anions to nitroalkenes followed by protonation at -78 °C gives anti-(J-nitro sulfides (Eq. 4.8).11 This procedure can be extended to the preparation of a/jti-(3-nitro selenides (Eq. 4.9)12 and a/jti-(3-nitro ethers (Eq. 4.10).13 The addition products of benzyl alcohol are converted into P-amino alcohols with the retention of the configuration, which is a useful method for anri-P-amino alcohols. This is an alternative method of stereoselective nitro-aldol reactions (Section 3.3). The anti selectivity of these reactions is explained on the basis of stereoselective protonation to nitronate anion intermediates. The high stereoselectivity requires heteroatom substituents on the P-position of the nitro group. The computational calculation exhibits that the heteroatom covers one site of the plane of the nitronate anion.14... [Pg.73]

Silyloxy)alkenes were first reported by Mukaiyama as the requisite latent enolate equivalent to react with aldehydes in the presence of Lewis acid activators. This process is now referred to as the Mukaiyama aldol reaction (Scheme 3-12). In the presence of Lewis acid, anti-aldol condensation products can be obtained in most cases via the reaction of aldehydes and silyl ketene acetals generated from propionates under kinetic control. [Pg.145]

Treating boron reagent 45a with an oxazoline compound gives the azaeno-late 52. Subsequent aldol reaction of 52 with aldehyde yields mainly threo-product (anti-53) with good selectivities (Scheme 3-18).38... [Pg.151]

In the synthesis of D-eryt/zro-sphingosine (78 without BOC protection), the key step is the asymmetric aldol reaction of trimethylsilylpropynal 75 with ke-tene silyl acetal 76 derived from a-benzyloxy acetate. The reaction was carried out with 20 mol% of tin(II) triflate chiral diamine and tin(II) oxide. Slow addition of substrates to the catalyst in propionitrile furnishes the desired aldol adduct 77 with high diastereo- and enantioselectivity (syn/anti = 97 3, 91% ee for syn). In the synthesis of protected phytosphingosine (80, OH and NH2 protected as OAc and NHAc, respectively), the asymmetric aldol reaction is again employed as the key step. As depicted in Scheme 3-27, the reaction between acrolein and ketene silyl aectal 76 proceeds smoothly, affording the desired product 80 with 96% diastereoselectivity [syn/anti = 98 2) and 96% ee for syn (Scheme 3-27).50... [Pg.158]

Besides the silyl enolate-mediated aldol reactions, organotin(IY) enolates are also versatile nucleophiles toward various aldehydes in the absence or presence of Lewis acid.60 However, this reaction requires a stoichiometric amount of the toxic trialkyl tin compound, which may limit its application. Yanagisawa et al.61 found that in the presence of one equivalent of methanol, the aldol reaction of an aldehyde with a cyclohexenol trichloroacetate proceeds readily at 20°C, providing the aldol product with more than 70% yield. They thus carried out the asymmetric version of this reaction using a BINAP silver(I) complex as chiral catalyst (Scheme 3-34). As shown in Table 3-8, the Sn(IY)-mediated aldol reaction results in a good diastereoselectivity (,anti/syn ratio) and also high enantioselectivity for the major component. [Pg.163]

Traditional models for diastereoface selectivity were first advanced by Cram and later by Felkin for predicting the stereochemical outcome of aldol reactions occurring between an enolate and a chiral aldehyde. [37] During our investigations directed toward a practical synthesis of dEpoB, we were pleased to discover an unanticipated bias in the relative diastereoface selectivity observed in the aldol condensation between the Z-lithium enolate B and aldehyde C, Scheme 2.6. The aldol reaction proceeds with the expected simple diastereoselectivity with the major product displaying the C6-C7 syn relationship shown in Scheme 2.7 (by ul addition) however, the C7-C8 relationship of the principal product was anti (by Ik addition). [38] Thus, the observed symanti relationship between C6-C7 C7-C8 in the aldol reaction between the Z-lithium enolate of 62 and aldehyde 63 was wholly unanticipated. These fortuitous results prompted us to investigate the cause for this unanticipated but fortunate occurrence. [Pg.22]

The stereochemistry of the diastereomeric products isolated in this reaction were confirmed to be those arising from incomplete relative face selectivity of the aldol reaction (Felkin Anti-Felkin). Thus the stereochemistry was proven by comparing the H NMR spectrum of the major diastereomer with a compound of known stereochemistry that had been independently synthesized. [Pg.35]

Typical starting materials, catalysts, and products of the enamine-catalyzed aldol reaction are summarized in Scheme 17. In proline-catalyzed aldol reactions, enantioselectivities are good to excellent with selected cyclic ketones, such as cyclohexanone and 4-thianone, but generally lower with acetone. Hindered aldehyde acceptors, such as isobutyraldehyde and pivalaldehyde, afford high enantioselectivities even with acetone. In general, the reactions are anti selective, but there are aheady a number of examples of syn selective enamine aldol processes [200, 201] (Schemes 17 and 18, see below). However, syn selective aldol reactions are still rare, especially with cychc ketones. [Pg.44]

Ketone donors bearing a-heteroatoms are particularly useful donors for the enamine-catalyzed aldol reactions (Scheme 18). Both anti and syn aldol products can be accessed in remarkably high enantioselectivities using either proline or proline-derived amide, sulfonamide, or peptide catalysts. The syn selective variant of this reaction was discovered by Barbas [179]. Very recently, Luo and Cheng have also described a syn selective variant with dihydroxyacetone donors [201], and the Barbas group has developed improved threonine-derived catalysts 71 (Scheme 18) for syn selective reactions with both protected and unprotected dihydroxyacetone [202]. [Pg.45]

By the use of chiral oxazolidines derived from a chiral norephedrine and methyl ketones, an asymmetric aldol reaction proceeds in a highly enantioselective manner. In the case of ethyl or a-methoxy ketones, the corresponding anti aldol products were obtained with high diastereo- and enantioselectivities. A chiral titanium reagent, generated from... [Pg.290]

Although iV-acyloxazolidinones 88 and iV-acylthiazolidinethiones 90 lead to an anti aldol, the respective products 89 and 91 present a different anti configuration. Consequently, the corresponding derived magnesium enolates exhibit the opposite face selection in these reactions. On the basis of previous results involving enolates of various metal complexes such as boron, titanium, lithium or sodium enolates, the (Z)-metal enolate... [Pg.503]


See other pages where Aldol reactions 2,3-anti products is mentioned: [Pg.325]    [Pg.137]    [Pg.118]    [Pg.139]    [Pg.60]    [Pg.1088]    [Pg.422]    [Pg.135]    [Pg.137]    [Pg.444]    [Pg.50]    [Pg.111]    [Pg.22]    [Pg.23]    [Pg.59]    [Pg.63]    [Pg.64]    [Pg.67]    [Pg.72]    [Pg.72]    [Pg.75]    [Pg.218]    [Pg.232]    [Pg.387]    [Pg.73]    [Pg.208]    [Pg.40]    [Pg.121]    [Pg.262]   


SEARCH



Aldol product, anti

Aldol products

Aldol reactions products

Aldol, anti

Aldolate product

Anti-Cram-Felkin product, aldol reactions

Anti-aldol reaction

© 2024 chempedia.info