Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde Aldol, enantioselective

Surprisingly, the catalytic potential of proline (1) in asymmetric aldol reactions was not explored further until recently. List et al. reported pioneering studies in 2000 on intermolecular aldol reactions [14, 15]. For example, acetone can be added to a variety of aldehydes, affording the corresponding aldols in excellent yields and enantiomeric purity. The example of iso-butyraldehyde as acceptor is shown in Scheme 1.4. In this example, the product aldol 13 was obtained in 97% isolated yield and with 96% ee [14, 15]. The remarkable chemo- and enantioselectivity observed by List et al. triggered massive further research activity in proline-catalyzed aldol, Mannich, Michael, and related reactions. In the same year, MacMillan et al. reported that the phenylalanine-derived secondary amine 5 catalyzes the Diels-Alder reaction of a,/>-un saturated aldehydes with enantioselectivity up to 94% (Scheme 1.4) [16]. This initial report by MacMillan et al. was followed by numerous further applications of the catalyst 5 and related secondary amines. [Pg.5]

This method can be applied to a series of different aldehydes, whereby enantioselectivities of up to 96% ee are obtained. It is noteworthy that - similiarly to the proline-catalyzed aldol reaction - the Mannich reaction can also be extended to an enantio- and diastereoselective process. For example, the uic-aminoalcohol 7 is formed with a diastereomeric ratio of 17 1 and an enantioselectivity of 65% ee (Scheme 5 reaction 2). [Pg.182]

For satisfactory diemo- and stereoselectivity, most catalytic, direct cross-aldol methods are limited to the use of non enolizable (aromatic, a-tert-alkyl) or kineti-cally non enolizable (highly branched, ,/funsaturated) aldehydes as acceptor carbonyls. With aromatic aldehydes, however, enantioselectivity is sometimes moderate, and the dehydration side-product may be important. With regard to the donor counterpart, the best suited pronucleophile substrates for these reactions are symmetric ketones (acetone) and ketones with only one site amenable for enolization (acetophenones). With symmetric cyclic or acyclic ketones superior to acetone, syn/anti mixtures of variable composition are obtained [8b, 11, 19a]. Of particularly broad scope is the reaction of N-propionylthiazolidinethiones with aldehydes, which regularly gives high enantioselectivity of the syn aldol adduct of aromatic, a,fi-unsaturated, branched, and unbranched aldehydes [13]. [Pg.344]

Aldol reactions of methyl ketones. The optically active 1,3-oxazolidine (1) formed from a methyl ketone and ( — (-norephedrine aftir conversion to the tin(ll) enolate undergoes enantioselective aldol condensation with aldehydes. The enantioselectivity is partic-... [Pg.338]

The use of enamine catalysis in the enantioselective a-functionalization of carbonyl compounds has been reviewed, including aldol, Mannich, and alkylation processes," and a short review has examined enantioselective a-alkylation of aldehydes Benzodithiolylium tetrafluoroborate (133) is a water-stable salt and can be added enantioselectively to aldehydes at the a-position in the presence of simple chiral organocatalysts, giving the corresponding alcohol. The sulfurs can be readily cleaved with H2/Raney Ni, rendering the process a formal tf-methylation of aldehydes." a ,/3-Unsaturated aldehydes undergo enantioselective a- and y-alkylation via dien-amine activation, using a diarylprolinol TMS ether as catalyst." ... [Pg.45]

General. Chiral 2-bromo-l,3-bis(4-methylphenyl sulfonyl)-4,5-diphenyl- 1,3,2-diazaborolidine (1) is used to control the stereochemistry of enantioselective aromatic Claisen rearrangements, allylations of aldehydes, aldol reactions, and formation of chiral propa-l,2-dienyl and propargyl alcohols. Included is the discussion of both the R,R) and the (5,5) chiral controllers. [Pg.92]

Shortly thereafter, acetate aldol reactions using camphor-derived imidazo-lidinone 27 vere reported by Palomo and co vorkers [15]. They reported moderate yields and enantioselectivity for a variety of unsaturated and aliphatic aldehydes (Table 2.4, entries 8-12). Interestingly, enantioselectivity for unsaturated aldehydes vas opposite that for aliphatic aldehydes. Also, enantioselectivity reported for titanium vas completely opposite that of the corresponding lithium enolate reactions. [Pg.67]

Here we will illustrate the method using a single example. The aldol reaction between an enol boronate and an aldehyde can lead to four possible stereoisomers (Figure 11.32). Many of these reactions proceed with a high degree of diastereoselectivity (i.e. syn anti) and/or enantioselectivity (syn-l syn-Tl and anti-l anti-lT). Bernardi, Capelli, Gennari,... [Pg.626]

Chiral 2-oxazolidones are useful recyclable auxiliaries for carboxylic acids in highly enantioselective aldol type reactions via the boron enolates derived from N-propionyl-2-oxazolidones (D.A. Evans, 1981). Two reagents exhibiting opposite enantioselectivity ate prepared from (S)-valinol and from (lS,2R)-norephedrine by cyclization with COClj or diethyl carbonate and subsequent lithiation and acylation with propionyl chloride at — 78°C. En-olization with dibutylboryl triflate forms the (Z)-enolates (>99% Z) which react with aldehydes at low temperature. The pure (2S,3R) and (2R,3S) acids or methyl esters are isolated in a 70% yield after mild solvolysis. [Pg.61]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

Since the first reported directed aldol condensation using lithiated imines1. few methods concerning the diastereo- and enantioselectivity of their addition to aldehydes and ketones have been published. [Pg.599]

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

As already discussed for aldol and Robinson annulation reactions, proline is also a catalyst for enantioselective Mannich reactions. Proline effectively catalyzes the reactions of aldehydes such as 3-methylbutanal and hexanal with /V-arylimines of ethyl glyoxalate.196 These reactions show 2,3-syn selectivity, although the products with small alkyl groups tend to isomerize to the anti isomer. [Pg.143]

The syntheses in Schemes 13.45 and 13.46 illustrate the use of oxazolidinone chiral auxiliaries in enantioselective synthesis. Step A in Scheme 13.45 established the configuration at the carbon that becomes C(4) in the product. This is an enolate alkylation in which the steric effect of the oxazolidinone chiral auxiliary directs the approach of the alkylating group. Step C also used the oxazolidinone structure. In this case, the enol borinate is formed and condensed with an aldehyde intermediate. This stereoselective aldol addition established the configuration at C(2) and C(3). The configuration at the final stereocenter at C(6) was established by the hydroboration in Step D. The selectivity for the desired stereoisomer was 85 15. Stereoselectivity in the same sense has been observed for a number of other 2-methylalkenes in which the remainder of the alkene constitutes a relatively bulky group.28 A TS such as 45-A can rationalize this result. [Pg.1205]

The heterobimetallic asymmetric catalyst, Sm-Li-(/ )-BINOL, catalyzes the nitro-aldol reaction of ot,ot-difluoroaldehydes with nitromethane in a good enantioselective manner, as shown in Eq. 3.78. In general, catalytic asymmetric syntheses of fluorine containing compounds have been rather difficult. The S configuration of the nitro-aldol adduct of Eq. 3.78 shows that the nitronate reacts preferentially on the Si face of aldehydes in the presence of (R)-LLB. In general, (R)-LLB causes attack on the Re face. Thus, enantiotopic face selection for a,a-difluoroaldehydes is opposite to that for nonfluorinated aldehydes. The stereoselectivity for a,a-difluoroaldehydes is identical to that of (3-alkoxyaldehydes, as shown in Scheme 3.19, suggesting that the fluorine atoms at the a-position have a great influence on enantioface selection. [Pg.61]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

The synthesis of the BC-ring fragment 26 begins with the enantioselective aldol reaction of aldehyde 22 and chiral boron enolate 23 derived from (—)-DIP-Cl as described by Paterson and Brown [42]. The aldol adduct 24 is converted to the... [Pg.110]

As practiced in the preceding syntheses by Evans and Nishiyama and Yamamura, the A-ring fragment 43 is formed through substrate-directed vinylogous aldol reaction of the Brassard-type diene 19 and the chiral aldehyde 42, which is prepared using Brown s protocols for enantioselective allylation [53], followed by hydroxy-directed nnn-diastereoselective reduction of the C3 ketone (Me4NB(OAc)3H) [41],... [Pg.114]

The key step in the synthesis of A-ring fragment 50 [56] is the chelation-controlled addition of allylstannane 53 to aldehyde 52, which sets the C7 stereocenter and introduces the C8 gem-dimethyl moiety. Aldehyde 52 is itself prepared from 1,3-propanediol using the author s protocol for titanium-catalyzed enantioselective allylstannation [57], which sets the C5 stereocenter, followed by chelation-controlled Mukaiyama aldol addition [58] to establish the C3 stereocenter (Scheme 5.6). [Pg.115]


See other pages where Aldehyde Aldol, enantioselective is mentioned: [Pg.276]    [Pg.61]    [Pg.288]    [Pg.318]    [Pg.318]    [Pg.91]    [Pg.344]    [Pg.318]    [Pg.197]    [Pg.160]    [Pg.68]    [Pg.61]    [Pg.308]    [Pg.1222]    [Pg.314]    [Pg.1337]    [Pg.92]    [Pg.122]    [Pg.123]    [Pg.138]    [Pg.415]    [Pg.416]    [Pg.110]    [Pg.4]    [Pg.255]    [Pg.306]    [Pg.109]   
See also in sourсe #XX -- [ Pg.3 , Pg.79 , Pg.81 , Pg.88 , Pg.104 ]




SEARCH



Aldehydes enantioselective

Aldol enantioselective

Aldolization enantioselective

Enantioselectivity aldehydes

© 2024 chempedia.info