Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proline effect

As already discussed for aldol and Robinson annulation reactions, proline is also a catalyst for enantioselective Mannich reactions. Proline effectively catalyzes the reactions of aldehydes such as 3-methylbutanal and hexanal with /V-arylimines of ethyl glyoxalate.196 These reactions show 2,3-syn selectivity, although the products with small alkyl groups tend to isomerize to the anti isomer. [Pg.143]

C]Ala-bR are resonated at higher frequency than those of the a-helix forms, although Ala 184 and 235 are accidentally overlapped by the peaks of the loops. It is also noted that the peak position of the random coil is located at the boundary that divides them. On the contrary, the chemical shifts of the loop regions of [l- C]Val, Pro, He are at lower frequency than those of the a-helix form, exeept for Val 49, and the peak positions of the a-helices are located at the higher frequency side with respect to that of the random coil. The unusually low-frequency shift of the NMR peak of Val 49 in the Val-Pro sequence is due to the so-called proline effect in which the carbonyl chemical shift of the amino acid residue in the Val-... [Pg.115]

Biochemical Functions. Ascorbic acid has various biochemical functions, involving, for example, coUagen synthesis, immune function, dmg metabohsm, folate metaboHsm, cholesterol cataboHsm, iron metaboHsm, and carnitine biosynthesis. Clear-cut evidence for its biochemical role is available only with respect to coUagen biosynthesis (hydroxylation of prolin and lysine). In addition, ascorbic acid can act as a reducing agent and as an effective antioxidant. Ascorbic acid also interferes with nitrosamine formation by reacting direcdy with nitrites, and consequently may potentially reduce cancer risk. [Pg.21]

ENZYMATIC ANALYSIS WITH CARBOXYPEPTIDASES. Carboxypeptidases are enzymes that cleave amino acid residues from the C-termini of polypeptides in a successive fashion. Four carboxypeptidases are in general use A, B, C, and Y. Carboxypeptidase A (from bovine pancreas) works well in hydrolyzing the C-terminal peptide bond of all residues except proline, arginine, and lysine. The analogous enzyme from hog pancreas, carboxypeptidase B, is effective only when Arg or Lys are the C-terminal residues. Thus, a mixture of carboxypeptidases A and B liberates any C-terminal amino acid except proline. Carboxypeptidase C from citrus leaves and carboxypeptidase Y from yeast act on any C-terminal residue. Because the nature of the amino acid residue at the end often determines the rate at which it is cleaved and because these enzymes remove residues successively, care must be taken in interpreting results. Carboxypeptidase Y cleavage has been adapted to an automated protocol analogous to that used in Edman sequenators. [Pg.134]

Some workers avoid delay. Pai)adium-on-carbon was used effectively for the reductive amination of ethyl 2-oxo-4-phenyl butanoate with L-alanyl-L-proline in a synthesis of the antihyperlensive, enalapril maleate. SchifTs base formation and reduction were carried out in a single step as Schiff bases of a-amino acids and esters are known to be susceptible to racemization. To a solution of 4,54 g ethyl 2-oxO 4-phenylbutanoate and 1.86 g L-alanyl-L-proline was added 16 g 4A molecular sieve and 1.0 g 10% Pd-on-C The mixture was hydrogenated for 15 hr at room temperature and 40 psig H2. Excess a-keto ester was required as reduction to the a-hydroxy ester was a serious side reaction. The yield was 77% with a diastereomeric ratio of 62 38 (SSS RSS)((55). [Pg.85]

In supported liquid membranes, a chiral liquid is immobilized in the pores of a membrane by capillary and interfacial tension forces. The immobilized film can keep apart two miscible liquids that do not wet the porous membrane. Vaidya et al. [10] reported the effects of membrane type (structure and wettability) on the stability of solvents in the pores of the membrane. Examples of chiral separation by a supported liquid membrane are extraction of chiral ammonium cations by a supported (micro-porous polypropylene film) membrane [11] and the enantiomeric separation of propranolol (2) and bupranolol (3) by a nitrate membrane with a A/ -hexadecyl-L-hydroxy proline carrier [12]. [Pg.130]

Besides high effectiveness in the diastereoselective control of nucleophilic addition reactions, another major goal in the design of chiral auxiliaries is the use of readily available, chiral starting materials. The hexahydro-l//-pyrrolo[l,2-c]imidazole derivatives 9a-e are examples which use the inexpensive amino acid L-proline (7) as starting material. [Pg.114]

In addition to effects on biochemical reactions, the inhibitors may influence the permeability of the various cellular membranes and through physical and chemical effects may alter the structure of other subcellular structures such as proteins, nucleic acid, and spindle fibers. Unfortunately, few definite examples can be listed. The action of colchicine and podophyllin in interfering with cell division is well known. The effect of various lactones (coumarin, parasorbic acid, and protoanemonin) on mitotic activity was discussed above. Disturbances to cytoplasmic and vacuolar structure, and the morphology of mitochondria imposed by protoanemonin, were also mentioned. Interference with protein configuration and loss of biological activity was attributed to incorporation of azetidine-2-carboxylic acid into mung bean protein in place of proline. [Pg.139]

The incretin effect is reduced in type 2 diabetes, and this is attributed, at least in part, to reduced secretion of GLP-1. The biological actions of GLP-1 remain essentially intact in type 2 diabetes, but administration of extra GLP-1 is not a practical therapeutic option because the peptide is degraded rapidly if A < 2 min) by the enzyme dipeptidyl peptidase IV (DPP-4). DPP-4 cleaves the N-terminal dipeptide from many of the peptides that have either an alanine or a proline residue penultimate to the N-terminus (Fig. 6). [Pg.122]

Nash, D., Paleg, L.G. Wiskich, J.T. (1982). The effect of proline, betaine and some other solutes on the heat stability of mitochondrial enzymes. Australian Journal of Plant Physiology, 9, 45-57. [Pg.128]

Rudolph, A.S., Crowe, J.H. Crowe, L.M. (1986). Effects of three stabilizing agents - proline, betaine and trehalose on membrane phospholipids. Archives of Biochemistry and Biophysics, 245, 134-43. [Pg.129]

Moftah, A.E. Michel, B.E. (1987). The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiology, 83, 238-43. [Pg.195]

Evidence exists that the relative solubility of amines and inhibitors in heterogeneous oil-water systems could be decisive in formation of nitrosamines and blocking these reactions, Nitrosopyrrolidine formation in bacon predominates in the adipose tissue despite the fact that its precursor, proline, predominates in the lean tissue (5,6,7). Mottram and Patterson (8) partly attribute this phenomenon to the fact that the adipose tissue furnishes a medium in which nitrosation is favored, Massey, et al, (9) found that the presence of decane in a model heterogeneous system caused a 20-fold increase in rate of nitrosamine formation from lipophilic dihexylamine, but had no effect on nitrosation of hydrophilic pyrrolidine. Ascorbic acid in the presence of decane enhanced the synthesis of nitrosamines from lipophilic amines, but had no effect on nitrosation of pyrrolidine. The oil-soluble inhibitor ascorbyl palmitate had little influence on the formation of nitrosamines in the presence or absence of decane. [Pg.150]


See other pages where Proline effect is mentioned: [Pg.1160]    [Pg.56]    [Pg.340]    [Pg.56]    [Pg.97]    [Pg.660]    [Pg.680]    [Pg.1160]    [Pg.56]    [Pg.340]    [Pg.56]    [Pg.97]    [Pg.660]    [Pg.680]    [Pg.95]    [Pg.287]    [Pg.201]    [Pg.417]    [Pg.83]    [Pg.2]    [Pg.70]    [Pg.264]    [Pg.172]    [Pg.719]    [Pg.129]    [Pg.138]    [Pg.123]    [Pg.162]    [Pg.195]    [Pg.206]    [Pg.16]    [Pg.235]    [Pg.194]    [Pg.123]    [Pg.123]    [Pg.189]    [Pg.240]    [Pg.11]   
See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.115 ]

See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Proline residues solvent effects

Proline residues substituent effects

Proline substitution effects

© 2024 chempedia.info