Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols with epoxides

Epoxide resins are essentially long-chain polyhydric alcohols with epoxide groups at either end. They make useful building blocks because both the hydroxyl and the epoxide groups are available for reaction with other compounds. [Pg.583]

Aliphatic or aromatic alcohols can be alkylated by epoxides under either basic or acidic reaction conditions. Reaction of aliphatic alcoholates with epoxides can be complicated by base-induced rearrangement or oligomerization of the epoxide, because alcoholates are strongly basic and because the product of epoxide ring opening is again an alcoholate. These side reactions can be suppressed by using only catalytic amounts of base (Scheme 4.78). The examples sketched in Scheme 4.78 show that under basic reaction conditions nudeophilic attack occurs preferentially at the sterically most accessible carbon atom. [Pg.113]

Amines also react with epoxides at the less substituted carbon atom. As a slightly more testing problem, suggest a synthesis of the alcohol (TM 165) whose derivatives are used in disinfectants ("phemeiide" etc.). [Pg.52]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Nucleophilic ring opening of epoxides by ammonia (Section 16 12) The strained ring of an epoxide is opened on nucleo philic attack by ammonia and amines to give 3 ammo alcohols Azide ion also re acts with epoxides the products are p azido alcohols... [Pg.927]

The cleavage of steroidal epoxides with Grignard reagents leads exclusively to alcohols with the tra 5-diaxial orientation of the hydroxyl group and the newly introduced alkyl group. °... [Pg.56]

In some cases products of rearrangement are obtained either partially or exclusively on treatment of Grignard reagents with epoxides. Thus, reaction of the 2/ ,3/ -epoxide (14) with methyl Grignard reagent affords a mixture of two epimeric secondary A-nor alcohols (15) in 80% yield and the tertiary hydroxy compound, 2a-methyl-5a-cholestan-2/f-ol (16) in 15 % yield. ... [Pg.84]

As with i -substituted allyl alcohols, 2,i -substituted allyl alcohols are epoxidized in excellent enantioselectivity. Examples of AE reactions of this class of substrate are shown below. Epoxide 23 was utilized to prepare chiral allene oxides, which were ring opened with TBAF to provide chiral a-fluoroketones. Epoxide 24 was used to prepare 5,8-disubstituted indolizidines and epoxide 25 was utilized in the formal synthesis of macrosphelide A. Epoxide 26 represents an AE reaction on the very electron deficient 2-cyanoallylic alcohols and epoxide 27 was an intermediate in the total synthesis of (+)-varantmycin. [Pg.56]

The reaction of olefins,alcohols,and epoxides > with or at high temperatures over catalysts such as... [Pg.25]

With this epoxidation procedure it is possible to convert the achiral starting material—i.e. the allylic alcohol—with the aim of a chiral reagent, into a chiral, non-racemic product in many cases an enantiomerically highly-enriched product is obtained. The desired enantiomer of the product epoxy alcohol can be obtained by using either the (-1-)- or (-)- enantiomer of diethyl tartrate as chiral auxiliary ... [Pg.254]

The oxidation of alkenes and allylic alcohols with the urea-EL202 adduct (UELP) as oxidant and methyltrioxorhenium (MTO) dissolved in [EMIM][BF4] as catalyst was described by Abu-Omar et al. [61]. Both MTO and UHP dissolved completely in the ionic liquid. Conversions were found to depend on the reactivity of the olefin and the solubility of the olefinic substrate in the reactive layer. In general, the reaction rates of the epoxidation reaction were found to be comparable to those obtained in classical solvents. [Pg.233]

The optically active iodide 153 (Scheme 43) can be conveniently prepared from commercially available methyl (S)-(+)-3-hydroxy-2-methylpropionate (154) (see Scheme 41). At this stage of the synthesis, our plan called for the conversion of 153 to a nucleophilic organometallic species, with the hope that the latter would combine with epoxide 152. As matters transpired, we found that the mixed higher order cuprate reagent derived from 153 reacts in the desired and expected way with epoxide 152, affording alcohol 180 in 88% yield this regioselective union creates the C12-C13 bond of rapamycin. [Pg.608]

The reason for the efficient epoxidation of explicitly allylic alcohols with this system can be found in the strong associative interactions occurring between the substrate and the catalyst. The [Ti(tartrate)(OR)2]2 dimer 1, which is considered to be the active catalyst in the reaction, will generate structure 2 after the addition of... [Pg.188]

One problem associated with the peroxotungstate-catalyzed epoxidation system described above is the separation of the catalyst after the completed reaction. To overcome this obstacle, efforts to prepare heterogeneous tungstate catalysts have been conducted. De Vos and coworkers employed W catalysts derived from sodium tungstate and layered double hydroxides (LDH - coprecipitated MgCU, AICI3, and NaOH) for the epoxidation of simple olefins and allyl alcohols with... [Pg.199]

The reaction between epoxides and ammonia is a general and useful method for the preparation of P-hydroxyamines. " Ammonia gives largely the primary amine, but also some secondary and tertiary amines. The useful solvents, the ethanolamines, are prepared by this reaction. For another way of accomplishing this conversion, see 10-54. The reaction can be catalyzed with Yb(OTf)3 and in the presence of a-BINOL is l,l -bi-2-naphthol derivative gives amino alcohols with high asymmetric induction. A variation used Yb(OTf)3 at lOkbar or at ambient pressure. Lithium triflate can also be used. Primary and secondary amines give, respectively, secondary and tertiary amines, for example. [Pg.504]

Epoxides can be reductively halogenated (the product is the alkyl bromide or iodide rather than the alcohol) with Me3SiCI—NaX—(Mc2SiH)20 (1,1,3,3-tetra-methyldisiloxane). ... [Pg.529]

Allyl silanes react with epoxides, in the presence of Bp3-OEt2 to give 2-allyl alcohols. The reaction of a-bromo lactones and CH2=CHCH2Si SiMe3)3 and AIBN leads to the a-allyl lactone. " Benzyl silanes coupled with allyl silanes to give ArCH2—R derivatives in the presence of VO(OEt)Cl2 " and allyltin compounds couple with allyl silanes in the presence of SnCU. " Allyl silanes couple to the a-carbon of amines under photolysis conditions. ... [Pg.535]

Radicals have also been generated at benzylic positions and shown to couple with epoxides, forming an alcohol. ... [Pg.927]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

The enantioselective epoxidation method developed by Sharpless and co-workers is an important asymmetric transformation known today. This method involves the epoxidation of allylic alcohols with fcrt-butyl hydroperoxide and titanium (sopropoxide in the presence of optically active pure tartarate esters, see Eqn. (25). [Pg.177]

The subsequent epoxidation of these in situ formed allylic tertiary alcohols yielded the corresponding syn-e oxy alcohols with high levels of diastereo- and enantioselectivity, thus providing a novel one-pot asymmetric synthesis of acyclic chiral epoxyalcohols via a domino vinylation epoxidation reaction (Scheme 4.17). ... [Pg.169]

Similarly, diethylaluminum azide gives (3-azido alcohols. The epoxide of 1-methylcyclohexene gives the tertiary azide, indicating that the regiochemistry is controlled by bond cleavage, but with diaxial stereoselectivity. [Pg.1107]

Epoxytin compounds are obtained by either hydrostannylation of unsaturated epoxides or condensation of organotin alcohols with epichlorohydrin 70). Extensive applications of these compounds in plastic industry have been suggested. [Pg.120]


See other pages where Alcohols with epoxides is mentioned: [Pg.86]    [Pg.86]    [Pg.26]    [Pg.57]    [Pg.58]    [Pg.129]    [Pg.225]    [Pg.295]    [Pg.299]    [Pg.43]    [Pg.295]    [Pg.340]    [Pg.42]    [Pg.143]    [Pg.190]    [Pg.198]    [Pg.330]    [Pg.13]   
See also in sourсe #XX -- [ Pg.564 , Pg.565 , Pg.566 , Pg.567 , Pg.1061 ]

See also in sourсe #XX -- [ Pg.564 , Pg.565 , Pg.566 , Pg.567 , Pg.1061 ]

See also in sourсe #XX -- [ Pg.754 , Pg.755 ]




SEARCH



1,2-Amino alcohols from epoxides, with resolution

Alcohols epoxidation

Alcohols, allylic with aziridines epoxidation

Alcohols, allylic with aziridines epoxides

Allyl alcohols kinetic resolution with Sharpless epoxidation

Epoxide alcohol

Epoxide with alcohol

Epoxide with alcohol

Epoxides reaction with alcohols

Epoxides with alcoholates

Epoxides, vinyl reaction with allylic alcohols

Reactions with epoxides alcohol synthesis

With epoxides

© 2024 chempedia.info