Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols, with acyl halides groups

The reactions of Grignard reagents with different types of carbonyl groups yield a number of important functional groups. For example, reaction with formaldehyde yields 1° alcohols with higher aldehydes, 2° alcohols with ketones, 3° alcohols with esters, 3° alcohols with acyl halides, ketones with N,N-dialkylformamides, aldehydes and with carbon dioxide, carboxylic acids. [Pg.278]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

Sulfonic esters are most frequently prepared by treatment of the corresponding halides with alcohols in the presence of a base. The method is much used for the conversion of alcohols to tosylates, brosylates, and similar sulfonic esters. Both R and R may be alkyl or aryl. The base is often pyridine, which functions as a nucleophilic catalyst, as in the similar alcoholysis of carboxylic acyl halides (10-21). Primary alcohols react the most rapidly, and it is often possible to sulfonate selectively a primary OH group in a molecule that also contains secondary or tertiary OH groups. The reaction with sulfonamides has been much less frequently used and is limited to N,N-disubstituted sulfonamides that is, R" may not be hydrogen. However, within these limits it is a useful reaction. The nucleophile in this case is actually R 0 . However, R" may be hydrogen (as well as alkyl) if the nucleophile is a phenol, so that the product is RS020Ar. Acidic catalysts are used in this case. Sulfonic acids have been converted directly to sulfonates by treatment with triethyl or trimethyl orthoformate HC(OR)3, without catalyst or solvent and with a trialkyl phosphite P(OR)3. ... [Pg.576]

Organopalladium intermediates are also involved in the synthesis of ketones and other carbonyl compounds. These reactions involve acylpalladium intermediates, which can be made from acyl halides or by reaction of an organopalladium species with carbon monoxide. A second organic group, usually arising from any organometallic reagent, can then form a ketone. Alternatively, the acylpalladium intermediate may react with nucleophilic solvents such as alcohols to form esters. [Pg.708]

The most important reactions of alkyl substituents a and y to the ring heteroatom are those which proceed via base-catalyzed deprotonation. Treatment of 2- and 4-alkyl heterocycles with strong bases such as sodamide and liquid ammonia, alkyllithiums, LDA, etc., results in an essentially quantitative deprotonation and formation of the corresponding carbanions. These then react normally with a wide range of electrophiles such as alkyl halides and tosylates, acyl halides, carbon dioxide, aldehydes, ketones, formal-dehyde/dimethylamine, etc., to give the expected condensation products. Typical examples of these transformations are shown in Scheme 17. Deprotonation of alkyl groups by the use of either aqueous or alcoholic bases can also be readily demonstrated by NMR spectroscopy, and while the amount of deprotonation under these conditions is normally very small, under the appropriate conditions condensations with electrophiles proceed normally (Scheme 18). [Pg.51]

Another clear example of an acetylene insertion reaction was reported by Chiusoli (15). He observed that allylic halides react catalytically with nickel carbonyl in alcoholic solution, in the presence of CO and acetylene, to form esters of cis-2,5-hexadienoic acid. The intermediate in this reaction is very probably a 7r-allylnickel carbonyl halide, X, which then undergoes acetylene insertion followed by CO insertion and alcoholysis or acyl halide elimination (35). Acetylene is obviously a considerably better inserting group than CO in this reaction since with acetylene and CO, the hexadienoate is the only product, whereas, with only CO, the 3-butenoate ester is formed (15). [See Reaction 59]. [Pg.195]

If the reaction is quenched with an alcohol, only the acyl halide reacts and this is a simple way to make a-bromoesters 38. The alternative product 39 is not formed. Water and alcohols are poor nucleophiles in the Sn2 reaction but better with carbonyl groups. [Pg.47]

There are several types of chiral derivatizing reagents commonly used depending on the functional group involved. For amines, the formation of an amide from reaction with an acyl halide [147,148], chloroformate reaction to form a carbamate [149], and reaction with isocyanate to form the corresponding urea are common reactions [150]. Carboxyl groups can be effectively esterified with chiral alcohols [151-153]. Isocynates have been used as reagents for enantiomer separation of amino acids, iV-methylamino acids, and 3-hydroxy acids [154]. In addition to the above-mentioned reactions, many others have been used in the formation of derivatives for use on a variety of packed and capillary columns. For a more comprehensive list, refer to References 155-159. [Pg.58]

Acyl halides such as acetyl chloride react with water to regenerate the starting acid and they react with alcohols to yield esters. The reaction is often facilitated by the presence of a tertiary amine catalyst. Although this may function purely as a base to neutralize the hydrochloric acid which is formed in the reaction, bases such as dimethylaminopyridine can also activate the carboxyl group via the formation of the intermediate shown in Scheme 3.66. [Pg.96]


See other pages where Alcohols, with acyl halides groups is mentioned: [Pg.105]    [Pg.51]    [Pg.1388]    [Pg.197]    [Pg.83]    [Pg.708]    [Pg.811]    [Pg.1214]    [Pg.191]    [Pg.95]    [Pg.216]    [Pg.619]    [Pg.1335]    [Pg.238]    [Pg.240]    [Pg.150]    [Pg.238]    [Pg.107]    [Pg.97]    [Pg.125]    [Pg.535]    [Pg.629]    [Pg.932]    [Pg.125]    [Pg.343]    [Pg.267]    [Pg.126]    [Pg.93]    [Pg.573]    [Pg.309]    [Pg.573]    [Pg.263]    [Pg.264]    [Pg.707]   
See also in sourсe #XX -- [ Pg.1270 ]




SEARCH



Acyl group

Acyl group acylation

Acyl with alcohols

Acylated alcohols

Alcohol groups

Alcoholic groups

Alcohols acylation

Alcohols acylic

Alcohols, with acyl halides

Group halides

© 2024 chempedia.info