Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Insertion, group

Various five-membered rings and their cyclization yields are shown below, with the inserted groups in italics ... [Pg.179]

Another clear example of an acetylene insertion reaction was reported by Chiusoli (15). He observed that allylic halides react catalytically with nickel carbonyl in alcoholic solution, in the presence of CO and acetylene, to form esters of cis-2,5-hexadienoic acid. The intermediate in this reaction is very probably a 7r-allylnickel carbonyl halide, X, which then undergoes acetylene insertion followed by CO insertion and alcoholysis or acyl halide elimination (35). Acetylene is obviously a considerably better inserting group than CO in this reaction since with acetylene and CO, the hexadienoate is the only product, whereas, with only CO, the 3-butenoate ester is formed (15). [See Reaction 59]. [Pg.195]

The newly inserted group of synthetic fibres based on renewable sources is just beginning, with poly-lactic fibres (PLA) as the prominent representative. One may also consider that, due to the move away from petrol sources, this group will become increasingly interesting in the coming decades. [Pg.369]

Diverse reactor shutdown system X Neutron absorber insertion Group 1... [Pg.525]

If, however, a tertiary amine has two alkyl groups and also an aryl group having the para position unsubstituted, then the action of nitrous acid is to insert the nitroso group directly into this para position. Dimethylaniline, for example, when treated with nitrous acid readily gives p-nitrosodimethyl-... [Pg.204]

Tertiary amines containing one alkyl and two aryl groups, such as mono-I ncthyldiphenyhiniir.e, Cl l3(C, l l.diX , arc rarely encountered and arc unimportant. They usually react with nitrous acid with the insertion of a nitroso group into only one of the two available para positions monomethyl-diphenylamine thus gives monomethyl-mono - pnitroso-diphenylamine. Cl hj(C.ill .)N C l 1 jXO, or V-nicthyl-p-nitrosodiphcnylaniine. [Pg.205]

The reaction of Grignard reagents with a carbonyl group can be understood as an insertion reaction of an unsaturated C=0 bond of the carbonyl group into... [Pg.6]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

Palladation of aromatic compounds with Pd(OAc)2 gives the arylpalladium acetate 25 as an unstable intermediate (see Chapter 3, Section 5). A similar complex 26 is formed by the transmetallation of PdX2 with arylmetal compounds of main group metals such as Hg Those intermediates which have the Pd—C cr-bonds react with nucleophiles or undergo alkene insertion to give oxidized products and Pd(0) as shown below. Hence, these reactions proceed by consuming stoichiometric amounts of Pd(II) compounds, which are reduced to the Pd(0) state. Sometimes, but not always, the reduced Pd(0) is reoxidized in situ to the Pd(II) state. In such a case, the whole oxidation process becomes a catalytic cycle with regard to the Pd(II) compounds. This catalytic reaction is different mechanistically, however, from the Pd(0)-catalyzed reactions described in the next section. These stoichiometric and catalytic reactions are treated in Chapter 3. [Pg.14]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

A cr-aryl-Pd bond is formed by the transfer of an aryl group even from arylphosphines to Pd and alkene insertion takes placefl 17-119], This reaction is slow and it is not a serious problem when triarylphosphine is used as a ligand. The cinnamate 149 is obtained by the reaction of PhsP with acrylate in the presence of Pd(OAc)2 in AcOH. [Pg.149]

When allene derivatives are treated with aryl halides in the presence of Pd(0), the aryl group is introduced to the central carbon by insertion of one of the allenic bonds to form the 7r-allylpalladium intermediate 271, which is attacked further by amine to give the allylic amine 272. A good ligand for the reaction is dppe[182]. Intramolecular reaction of the 7-aminoallene 273 affords the pyrrolidine derivative 274[183]. [Pg.166]

The reaction of the o-iodophenol 275 with an alkylallene affords the bcnzo-furan derivative 276[184], Similarly, the reactions of the 6-hydroxyallenes 277 and 279 with iodobenzene afford the tetrahydrofurans 278 and 280. Under a CO atmosphere, CO insertion takes place before the insertion of the allenyl bond, and a benzoyl group, rather than a phenyl group, attacks the allene carbon to give 280. Reaction of iodobenzene with 4,5-hexadienoic acid (281) affords the furanone derivative 282[185]. [Pg.167]

Terminal alkynes undergo the above-mentioned substitution reaction with aryl and alkenyl groups to form arylalkynes and enynes in the presence of Cul as described in Section 1.1.2.1. In addition, the insertion of terminal alkynes also takes place in the absence of Cul, and the alkenylpalladium complex 362 is formed as an intermediate, which cannot terminate by itself and must undergo further reactions such as alkene insertion or anion capture. These reactions of terminal alkynes are also treated in this section. [Pg.179]

The 7V-methylbenzo[( e]quinoline 426 was prepared by trapping the insertion product of an internal alkyne with a tertiary dimethylamine. One methyl group is eliminated. The dimethylaminonaphthalene-Pd complex 427 is an active catalyst and other Pd compounds are inactive[290a]. [Pg.186]


See other pages where Insertion, group is mentioned: [Pg.196]    [Pg.72]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.3533]    [Pg.591]    [Pg.597]    [Pg.598]    [Pg.3532]    [Pg.328]    [Pg.96]    [Pg.525]    [Pg.196]    [Pg.72]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.3533]    [Pg.591]    [Pg.597]    [Pg.598]    [Pg.3532]    [Pg.328]    [Pg.96]    [Pg.525]    [Pg.222]    [Pg.417]    [Pg.213]    [Pg.21]    [Pg.434]    [Pg.436]    [Pg.461]    [Pg.314]    [Pg.201]    [Pg.343]    [Pg.57]    [Pg.90]    [Pg.92]    [Pg.95]    [Pg.96]    [Pg.127]    [Pg.129]    [Pg.137]    [Pg.153]    [Pg.156]    [Pg.185]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Carbene insertion reactions, group 4 metal

Carbene insertion reactions, group 4 metal direction

Carbon-nitrogen groups, insertion

Carbon-nitrogen groups, insertion reactions

Carbonyl group, insertion into 77-’-carbene

Chelating groups chelation-controlled insertion

Group 12 unsaturated moiety insertion

Group 4 metal substituents carbene insertion reactions

Insertion into main group and post-transition metal amides

Insertion of Diphenylboron Group to the Cobaloxime Moiety

Insertion reactions main group metals

Insertions, group-selective

Modification by Insertion of Functional Groups onto the Polysaccharide Backbone

Trifluoromethyl group insertion methods, stereoselective

© 2024 chempedia.info