Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols, secondary, conversion into compounds

Substrates suitable for oxidative conversion into carbonyl compounds are alkenes, primary or secondary alcohols, and benzyl halides. Polystyrene-bound alkenes have been converted into aldehydes (with the loss of one carbon atom) by ozonolysis followed by reductive cleavage of the intermediate ozonide (Entry 1, Table 12.3). [Pg.319]

The major application of the Mitsunobu reaction is the conversion of a chiral secondary alcohol 1 into an ester 3 with concomitant inversion of configuration at the secondary carbon center. In a second step the ester can be hydrolyzed to yield the inverted alcohol 4, which is enantiomeric to 1. By using appropriate nucleophiles, alcohols can be converted to other classes of compounds—e.g. azides, amines or ethers. [Pg.204]

A mixture of 1,4-dioxane and water is often used as the solvent for the conversion of aldehydes and ketones by H2Se03 to a-dicarbonyl compounds in one step (Eq. 8.117).331 Dehydrogenation of carbonyl compounds with selenium dioxide generates the a, (i-unsaturated carbonyl compounds in aqueous acetic acid.332 Using water as the reaction medium, ketones can be transformed into a-iodo ketones upon treatment with sodium iodide, hydrogen peroxide, and an acid.333 Interestingly, a-iodo ketones can be also obtained from secondary alcohol through a metal-free tandem oxidation-iodination approach. [Pg.281]

Relatively little attention has been paid to the conversion of racemic compounds into their enantiomerically pure versions in a single process, in other words a deracemization. For certain classes of chiral compounds such as secondary alcohols, this approach should provide many benefits, particularly to the pharmaceutical industry. Existing routes to high value intermediates in their racemic form may be modified to provide the equivalent homochiral product, thus reducing the extent of development chemistry required. In addition, the... [Pg.58]

Many reagents known for the direct conversion of alcohols into halides have been used to achieve site-selective nucleophilic substitution in polyhydroxy compounds [44-46,62]. In some cases, it is possible to effect selective displacements of primary alcohols in the presence of secondary ones, and to achieve differential substitutions of secondary alcohols in unprotected sugars [44,45,64,65] (Scheme 4). [Pg.129]

The reaction of primary or secondary alcohols with thionyl chloride is a general method for preparing the corresponding chloro compounds. In the first step a chlorosulfne ROSOC) is formed from which S02 is eliminated in a relatively slow step. This decomposition is facilitated by a tertiary amine, e.g. pyridine. The ammonium salt RO-SON+.Cl— formed from the chlorosulftte is subsequently attacked on carbon (in R) by CF. Since nucleophilic substitutions on propargylic carbon proceed more easily than on carbon in saturated compounds, it may be expected that the conversion of propargylic chlorosulfites into the chlorides will take place under relatively mild conditions. [Pg.133]

The combination of triphenylphosphine with esters of trihaloacetic acids provides a reagent system for the stereo- and regio-selective conversion of alcohols into alkyl halides.The bromine-triphenylphosphine adduct has been used at low temperatures (-50 C in dichloromethane) for the removal of the tetrahydropyranyl protecting group from tetrahydropyranyl ethers derived from secondary and tertiary alcohols.The reactions of tertiary phosphines (and other trivalent phosphorus compounds) with iodine in aprotic solvents have received further study, a range of species being identified.The first reported study of the reactions of trivalent phosphorus compounds with monopositive astatine has led to the identification of stable complexes with triphenylphosphine, trioctylphosphine, and triethylphosphite. [Pg.13]

The main applications of oxidation with chromium trioxide are transformations of primary alcohols into aldehydes [184, 537, 538, 543, 570, 571, 572, 573] or, rarely, into carboxylic acids [184, 574], and of secondary alcohols into ketones [406, 536, 542, 543, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584]. Jones reagent is especially successful for such oxidations. It is prepared by diluting with water a solution of 267 g of chromium trioxide in a mixture of 230 mL of concentrated sulfuric acid and 400 mL of water to 1 L to form an 8 N CrOj solution [565, 572, 579, 581, 585, 556]. Other oxidations with chromic oxide include the cleavage of carbon-carbon bonds to give carbonyl compounds or carboxylic acids [482, 566, 567, 569, 580, 587, 555], the conversion of sulfides into sulfoxides [541] and sulfones [559], and the transformation of alkyl silyl ethers into ketones or carboxylic acids [590]. [Pg.22]

Sodium dichromate hydroxylates tertiary carbons [620] and oxidizes methylene groups to carbonyls [622, 623, 625, 626, 631] methyl and methylene groups, especially as side chains in aromatic compounds, to carboxylic groups [624, 632, 633, 634, 635] and benzene rings to quinones [630, 636, 637] or carboxylic acids [638]. The reagent is often used for the conversion of primary alcohols into aldehydes [629, 630, 639] or, less frequently, into carboxylic acids or their esters [640] of secondary alcohols into ketones [621, 629, 630, 641, 642, 643, 644] of phenylhydroxylamine into nitroso-benzene [645] and of alkylboranes into carbonyl compounds [646]. [Pg.24]

Sodium hypochlorite is used for the epoxidation of double bonds [659, 691] for the oxidation of primary alcohols to aldehydes [692], of secondary alcohols to ketones [693], and of primary amines to carbonyl compounds [692] for the conversion of benzylic halides into acids or ketones [690] for the oxidation of aromatic rings to quinones [694] and of sulfides to sulfones [695] and, especially, for the degradation of methyl ketones to carboxylic acids with one less carbon atom [655, 696, 697, 695, 699] and of a-amino acids to aldehydes with one less carbon [700]. Sodium hypochlorite is also used for the reoxidation of low-valence ruthenium compounds to ruthenium tetroxide in oxidations by ruthenium trichloride [701]. [Pg.27]

Primary alcohols are oxidized to aldehydes or acids, and secondary alcohols are oxidized to ketones. Tertiary alcohols resist oxidation, unless they are dehydrated in acidic media to alkenes, which are subsequently oxidized. The conversion of alcohols into carbonyl compounds can be achieved by catalytic dehydrogenation or by chemical oxidation. Catalytic dehydrogenation is especially of advantage with primary alcohols, because it prevents overoxidation to carboxylic acids. Examples are tabulated in equations 223-227 and 265-268. [Pg.114]


See other pages where Alcohols, secondary, conversion into compounds is mentioned: [Pg.20]    [Pg.66]    [Pg.307]    [Pg.285]    [Pg.31]    [Pg.616]    [Pg.272]    [Pg.231]    [Pg.78]    [Pg.225]    [Pg.214]    [Pg.460]    [Pg.319]    [Pg.30]    [Pg.34]    [Pg.354]    [Pg.126]    [Pg.298]    [Pg.774]    [Pg.345]    [Pg.342]    [Pg.2071]    [Pg.2988]    [Pg.279]    [Pg.110]    [Pg.46]    [Pg.1961]    [Pg.22]    [Pg.117]    [Pg.225]    [Pg.22]    [Pg.774]    [Pg.248]    [Pg.19]    [Pg.2070]    [Pg.2987]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Alcohols compounds

Alcohols conversion

Alcohols secondary alcohol

Conversion compounds

Conversion, secondary

© 2024 chempedia.info