Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydropyranyl ether, from

Because of problems encountered in the removal of the prop-l-enyl group in the above synthesis of the mannosyl-phosphatidylinositol, Shvets et al. [295] investigated the formation of the mono-tetrahydropyranyl ethers of the racemic inositol derivatives (429) and (430) and separated the isomeric mono-tetrahydropyranyl ethers from both by chromatography. Although the 1 -O-tetrahydropyrany 1 ether preponderated in... [Pg.129]

The tetrahydropyranyl ether, prepared from a phenol and dihydropyran (HCl/ EtOAc, 25°, 24 h), is cleaved by aqueous oxalic acid (MeOH, 50-90°, 1-2 h). ... [Pg.153]

The cyclohexylidene ketal, prepared from a catechol and cyclohexanone (AI2O3/ TsOH, CH2CI2, reflux, 36 h), is stable to metalation conditions (RX/BuLi) that cleave aiyl methyl ethers. The ketal is cleaved by acidic hydrolysis (coned. HCl/ EtOH, reflux, 1.5 h, 20°, 12 h) it is stable to milder acidic hydrolysis that cleaves tetrahydropyranyl ethers (1 AHCl/EtOH, reflux, 5 h, 91% yield). ... [Pg.172]

The /-propyldimethylsilyl ester is prepared from a carboxylic acid and the silyl chloride (Et3N, 0°). It is cleaved at pH 4.5 by conditions that do not cleave a tetrahydropyranyl ether (HOAc-NaOAc, acetone-H20, 0°, 45 min - 25°, 30 min, 91% yield). ... [Pg.263]

Enol ethers (15) and mixed acetals (16) are readily obtained from secondary but not from tertiary alcohols, whereas tetrahydropyranyl ethers can be formed even from tertiary alcohols. This is a result of the greater steric requirements of the reagents (17) and (18) as compared to (19). [Pg.380]

Tetrahydropyranyl ethers have been prepared from the quasi-axial 7a-hydroxyl in a 3)5-acetoxy-A -7a-ol, but in this case enhanced reactivity is due to the adjacent double bond. °... [Pg.403]

The tertiary 17) -hydroxyl group does not form bulky enol ethers and mixed acetals. However, tetrahydropyranyl ethers are obtained from 17a-ethynyl-17]3-hydroxy compounds. Tetrahydropyranyl ethers have also been prepared from tertiary 17a-hydroxyl groups. ... [Pg.404]

The 21-hydroxyl group in the corticosteroid series can be protected as the base stable triphenylmethyl ether and tetrahydropyranyl ether. " " Mixed acetals from 21-alcohols are extremely acid sensitive compounds. ... [Pg.404]

The tetrahydropyranyl ether, prepared from a phenol and dihydropyran (HCl/EtOAc, 25°, 24 h) is cleaved by aqueous oxalic acid (MeOH, 50-90°, 1-2 h). Tonsil, Mexican Bentonite earth, HSZ Zeolite, and H3[PW,204o] have also been used for the tetrahydropyranylation of phenols. The use of [Ru(ACN)3(triphos)](OTf)2 in acetone selectively removes the THP group from a phenol in the presence of an alkyl THP group. Ketals of acetophenones are also cleaved. ... [Pg.261]

Although alcohols are oxidized by tetra-n-butylammonium persulphate when the reaction is conducted in dichloromethane, tetrahydropyranyl ethers have been produced (>90%) when attempts to oxidize the alcohol are conducted in tetrahydro-pyran (see Chapter 10) [ 19], Tetrahydrofuranyl ethers have been prepared by an analogous method [20,21 ]. Base-mediated elimination of halo acids from P-halo alcohols under phase-transfer catalysed conditions produce oxiranes in high yield (70-85%). The reaction has particular use in the synthesis of epihalohydrins from p,y-dihalo alcohols [22],... [Pg.72]

Fragment 2 was prepared from (R)-(-)-3-bromo-2-methyl-l-propanol by initial protection as the tetrahydropyranyl ether, followed by a Finkelstein halogen ex-... [Pg.128]

The analogue in which carbon replaces oxygen in the enol ring should of course avoid the stability problem. The synthesis of this compound initially follows a scheme similar to that pioneered by the Corey group. Thus, acylation of the ester (7-2) with the anion from trimethyl phosphonate yields the activated phosphonate (7-3). Reaction of the yhde from that intermediate with the lactone (7-4) leads to a compound (7-5) that incorporates the lower side chain of natural prostaglandins. This is then taken on to lactone (7-6) by sequential reduction by means of zinc borohydride, removal of the biphenyl ester by saponification, and protection of the hydroxyl groups as tetrahydropyranyl ethers. [Pg.10]

Mono- and di-alkylated furans were synthesized in a one-pot preparation from 2-propynyl-2-tetrahydropyranyl ether (106), butyllithium and formaldehyde. The intermediate allenyl ether (107) presumably cyclizes via a 2-(2-tetrapyranyloxy)-2,5-dihydrofuran (108) to afford the heterocycle (109) (79AG(E)875). In a similar manner, singly and doubly branched tetrahydropyranyloxybutynolates afforded the substituted furans (110) (Scheme 20). The thermocatalytic isomerization of ethyl l-methyl-2-phenylcyclopropene-3-carboxylate yielded the furan, possibly by a 1,3-sigmatropic displacement step or by a non-concerted biradical intermediate (75T2495). [Pg.666]

Alkyl tetrahydropyranyl ethers (118 R = Et or Bu) behave similarly (68JOC2266). In both cases, the base peak occurs at m/e 85, resulting from loss of an RO radical from [M]t. Pathways which involve ring cleavage of the molecular ion are also operative and appear to be of greater importance.for the ethyl ether (118 R = Et). [Pg.605]

The conventional vinylidene complex could be isolated when the hydroxyl group was protected as the tetrahydropyranyl ether derivative reaction of this with acid immediately gave the cyclic carbene complex, even under mild conditions. The reaction is related to the formation of similar nickel(II)- and platinum(IV)-carbene complexes from the [Pg.71]

Tetrahydropyranyl ethers are readily prepared from the alcohol and 2,3-tetrahydropyran in the presence of acid, and the reaction is widely used as a method of protection of hydroxyl groups. Preparative procedures and the methods of deprotection are given in Section 5.4.6, p. 551). [Pg.581]

A recently published full account of another synthesis [69] of the same alkaloid starting from the /rans-cinnamic ester 264 represented a different approach (ACD -> ACDB) to ( )-lycorine (Scheme 42). An intramolecular Diels-Alder reaction of 264 in o-dichlorobenzene furnished the two diastereomeric lactones 265 (86%) and 266 (5%) involving the endo and exo modes of addition respectively. The transposition of the carbonyl group of 265 to 267 was achieved by reduction with lithium aluminium hydride, followed by treatment of the resulting diol with Fetizon s reagent, which selectively oxidised the less substituted alcohol to give isomeric 5-lactone 267. On exposure to iodine in alkaline medium 267 underwent iodolactonisation to afford the iodo-hydroxy y-lactone 268. The derived tetrahydropyranyl ether... [Pg.503]


See other pages where Tetrahydropyranyl ether, from is mentioned: [Pg.159]    [Pg.36]    [Pg.40]    [Pg.57]    [Pg.387]    [Pg.414]    [Pg.72]    [Pg.6]    [Pg.802]    [Pg.398]    [Pg.512]    [Pg.379]    [Pg.9]    [Pg.140]    [Pg.199]    [Pg.199]    [Pg.448]    [Pg.81]    [Pg.27]    [Pg.29]    [Pg.216]    [Pg.300]    [Pg.463]    [Pg.425]    [Pg.663]    [Pg.159]   


SEARCH



From ethers

Tetrahydropyranyl ether, from alcohols

Tetrahydropyranyl ethers

Tetrahydropyranylation

Tetrahydropyranylations

© 2024 chempedia.info