Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol continued continuous-flow activated

Leitner et al. have synthesized the PEG-modified silica stabilized and immobilized palladium nanoparticles for aerobic alcohol oxidation in combination with scC02 as reaction medium under mild conditions, which show high activity and excellent stability under continuous-flow operation [68], ScC02 could diffuse the substrates and products from the active nanoparticles in a gas-like manner. This allows rapid chemical transformation at the active center, ensures efficient removal of the products from the surface, and minimizes the mobility of solid-supported catalytically active species [69]. In this way, catalysts based on palladium nanoparticles together with PEG as stabilizing matrix could avoid aggregating and forming less active and selective Pd-black [20, 60, 70]. [Pg.29]

The addition of diethylzinc to aldehydes produces secondary alcohols. This process can be stereoselectively catalyzed by chiral amino alcohols that form Schiff-base zinc complexes with the aldehyde and the metal. With the aim of simplifying the work-up of these reactions and to use continuous-flow processes, the polymer-supported amino alcohols 115 and 116 were synthesized (Scheme 21) [91]. The polymers were obtained by co-polymerization of the chiral monomer 117 and styrene 58 in the presence of divinylbenzene (118) or cross-tinldng agent 119 containing a flexible oxyethylene chain. The latter was used to ensure sufficient flexibility within the cross-linked network of the polymer and to further activate the nucleophile by coordination of the oxyethylene chain to the metal. [Pg.488]

The recent activities directed towards the immobilization of the dihydroxylation and epoxidation catalysts have already led to systems with acceptable catalytic properties [17,26,27]. Both, immobilized Zn amino alcohol and oxazaborolidi-none catalysts have been applied in continuous flow reactors [4,6]. Interestingly, these immobihzed oxazaboroHdinone catalysts give better enantioselectivities than their soluble analogs [6]. [Pg.1289]

Resin-bound amino alcohols also served to load diethyl zinc which then was employed in continuous flow additions to aromatic aldehydes [33]. Both diethyl zinc and p-chlorobenzaldehyde were added simultaneously at a slow rate under nitrogen into a cooled column loaded with functionalized polymer 6a, which afforded l-(p-chlorophenyl)-propanol with good enantiopurity (94% ee). The authors note that 58 mmol of the optically active alcohol were prepared in a continuous process by only employing 0.7 mmol of the immobilized catalyst. Similar results were reported for immobilized ephedrine, so it was concluded that continuous flow processes are often superior in efficiency and practicability compared to batch processes. In some cases, it was foimd that enantioselectivities were higher for convective flow processes than for the corresponding batch systems [34]. [Pg.221]

The active site responsible for the aerobic oxidation of alcohols over Pd/AljO, catalysts has long been debated [96-lOOj. Many reports claim that the active site for this catalyst material is the metallic palladium based on electrochemical studies of these catalysts [100, 101]. On the contrary, there are reports that claim that palladium oxide is the active site for the oxidation reaction and the metalhc palladium has a lesser catalytic activity [96,97). In this section, we present examples on how in situ XAS combined with other analytical techniques such as ATR-IR, DRIFTS, and mass spectroscopic methods have been used to study the nature of the actual active site for the supported palladium catalysts for the selective aerobic oxidation of benzylic alcohols. Initially, we present examples that claim that palladium in its metallic state is the active site for this selective aerobic oxidation, followed by some recent examples where researchers have reported that ojddic palladium is the active site for this reaction. Examples where in situ spectroscopic methods have been utilized to arrive at the conclusion are presented here. For this purpose, a spectroscopic reaction cell, acting as a continuous flow reactor, has been equipped with X-ray transparent windows and then charged with the catalyst material. A liquid pump is used to feed the reactants and solvent mixture into the reaction cell, which can be heated by an oven. The reaction was monitored by a transmission flow-through IR cell. A detailed description of the experimental setup and procedure can be found elsewhere [100]. Figure 12.10 shows the obtained XAS results as well as the online product analysis by FTIR for a Pd/AljOj catalyst during the aerobic oxidation of benzyl alcohol. [Pg.385]

Leitner and co-workers also studied the oxidation activity of palladium using supercritical CO2 as the solvent. They reported efficient and stable catalysts for the selective aerobic oxidation of benzylic and allylic alcohols to aldehydes and ketones with selectivities over 98% and TON values in the range of 22-47, using supercritical CO2 as the mobile phase in a batch as well as in continuous-flow process. The palladium nanoparticles were stabilised by polyethylene glycol (PEG)-modified silica and deposited on the surface of modified silica, and the authors claim... [Pg.636]

A continuous cross-flow filtration process has been utilized to investigate the effectiveness in the separation of nano sized (3-5 nm) iron-based catalyst particles from simulated Fischer-Tropsch (FT) catalyst/wax slurry in a pilot-scale slurry bubble column reactor (SBCR). A prototype stainless steel cross-flow filtration module (nominal pore opening of 0.1 pm) was used. A series of cross-flow filtration experiments were initiated to study the effect of mono-olefins and aliphatic alcohol on the filtration flux and membrane performance. 1-hexadecene and 1-dodecanol were doped into activated iron catalyst slurry (with Polywax 500 and 655 as simulated FT wax) to evaluate the effect of their presence on filtration performance. The 1-hexadecene concentrations were varied from 5 to 25 wt% and 1-dodecanol concentrations were varied from 6 to 17 wt% to simulate a range of FT reactor slurries reported in literature. The addition of 1-dodecanol was found to decrease the permeation rate, while the addition of 1-hexadecene was found to have an insignificant or no effect on the permeation rate. [Pg.270]

The objective of the present study is to develop a cross-flow filtration module operated under low transmembrane pressure drop that can result in high permeate flux, and also to demonstrate the efficient use of such a module to continuously separate wax from ultrafine iron catalyst particles from simulated FTS catalyst/ wax slurry products from an SBCR pilot plant unit. An important goal of this research was to monitor and record cross-flow flux measurements over a longterm time-on-stream (TOS) period (500+ h). Two types (active and passive) of permeate flux maintenance procedures were developed and tested during this study. Depending on the efficiency of different flux maintenance or filter media cleaning procedures employed over the long-term test to stabilize the flux over time, the most efficient procedure can be selected for further development and cost optimization. The effect of mono-olefins and aliphatic alcohols on permeate flux and on the efficiency of the filter membrane for catalyst/wax separation was also studied. [Pg.272]

One of the most important active ingredients of detergents is the sulfate or sulfonate compounds made via the oleum route. A process flow diagram is shown in Figure 9. In most cases, the sulfonation/sulfation is carried out continuously in a reactor where the oleum (a solution of sulfur trioxide in sulfuric acid) is brought into contact with the hydrocarbon or alcohol and a... [Pg.325]

When cross-linked crystals of thermolysin were applied in peptide synthesis in ethyl acetate, they were stable for several hundred hours at amazingly low enzyme consiunption, whereas a soluble enzyme preparation became inactive within a short period of time. Again it is worthwhile to consider the quality of the soluble enzyme preparation. When soluble thermolysin was stored in mixed aqueous-organic solutions, it lost about 50% of its activity within the first day of incubation only to be then quite stable for the next 15 days. It is possible that the initial inactivation was caused by an unstable fraction of thermolysin and that crystals of thermolysin no longer contained this unstable fraction [118]. Productivity comparable to that of crystals was achieved with thermolysin adsorbed on Amberlite XAD-7 resin which was employed in continuous plug flow reactors with tert-amyl alcohol as solvent [119]. [Pg.122]


See other pages where Alcohol continued continuous-flow activated is mentioned: [Pg.296]    [Pg.265]    [Pg.165]    [Pg.30]    [Pg.69]    [Pg.165]    [Pg.955]    [Pg.959]    [Pg.2825]    [Pg.34]    [Pg.342]    [Pg.456]    [Pg.379]    [Pg.403]    [Pg.528]    [Pg.781]    [Pg.414]    [Pg.23]    [Pg.99]    [Pg.65]    [Pg.360]    [Pg.169]    [Pg.72]    [Pg.849]    [Pg.364]    [Pg.97]    [Pg.45]    [Pg.251]    [Pg.327]    [Pg.65]    [Pg.215]    [Pg.239]    [Pg.916]    [Pg.410]    [Pg.2827]    [Pg.219]    [Pg.45]    [Pg.964]    [Pg.383]   


SEARCH



Activated flow

Active flow

Alcohol activation

Alcohol continued

Continuous flow

© 2024 chempedia.info