Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol catalysts polymerization

Alkylation of aluminum with ethyleae yields products that fiad appHcatioa as iaitiators and starter compounds ia the productioa of a-olefias and linear primary alcohols, as polymerization catalysts, and ia the syathesis of some monomers like 1,4-hexadieae. Triethyl aluminum [97-93-8] A1(C2H3)2, is the most important of the ethylene-derived aluminum alkyls. [Pg.433]

Calculated from Michaelis-Menten constants using lipase catalyst. Polymerization with zinc octanoate/butyl alcohol initiator system in bulk. [Pg.211]

Borazines, particularly polymeric compounds, have been extensively investigated as preceramic materials from which coatings and fibers of boron nitride can be produced upon thermolysis. B-aryl and halogeno-amino borazines are reported to have use as fire retardants in cotton and nylon textiles. Other reported uses for borazines are as epoxy resin catalysts, polymerization inhibitors of unsaturated alcohols and esters, and catalysts for polymerization of alkenes (95). [Pg.268]

Highly stereospecific catalysts for the polymerization of these monomers were found quite naturally along two lines of search starting from the triethylaluminum-water and triethylaluminum-alcohol catalyst systems, which were known to be stereospecific polymerization catalysts for these monomers when we started the experiments on this subject. Development and interrelation of these catalysts in our research are shown in Scheme 1 (8). [Pg.59]

In Nd alcoholate-catalyzed polymerizations, as a rule of thumb, the same halide donors are applied at the same molar ratios as with Nd-carboxylate-based catalyst systems. In the literature, hydrocarbon soluble as well as hydrocarbon insoluble halide donors are combined with Nd-alcoholates. Examples are benzyl chloride (BzCl) [37,38], AlBr3 [224,225], AlEtCl2 [226,227], Et2AlCl [231], fBuCl [231,232] and Me3SiCl [231]. [Pg.38]

However, the most important furan resins are those produced with 2-furfuryl alcohol, for example, the 2-furfuryl alcohol-formaldehyde-based resins, which are normally synthesized by a condensation reaction catalyzed by acidic sites and promoted by heat [224] or the poly(furfuryl alcohol) thermosetting resin that is usually synthesized by the cationic condensation of its monomer 2-furfuryl alcohol, which polymerizes exothermically in the presence of a catalyst such as acid and iodine in methylene chloride, producing black, amorphous, and branched and/or cross-linked structures [225],... [Pg.95]

Coniferyl alcohol was polymerized by laccase catalyst. The polymerization behavior depended on the origin of the enzyme. PCL and laccase from Coriolus versicolar showed high catalytic activity to give the dehydrogenative insoluble polymer, whereas very low catalytic activity was observed in laccase from Rhus vernicifera Stokes.54 The increase of the molecular weight was observed in the treatment of soluble lignin using TVL catalyst.82... [Pg.257]

Each of the catalysts in Fig. 12 has a specific action toward hydrogen and carbon monoxide as shown by the tendency to form methane or higher hydrocarbons, or alcohols, not to mention the ability to hydrogenate, to dehydrate alcohols, to polymerize olefins and to promote reactions such as isomerization, alkylation, and cyclization. Moreover, by suitable choice of synthesis conditions these characteristic properties of the catalyst may be guided into a particular direction. For instance, the less the hydrogenating power of a given catalyst, the higher must be... [Pg.319]

Reversible Chain Transfer Catalyzed Polymerization (RTCP) with Alcohol Catalysts... [Pg.159]

Alcohols (phenols, a vinyl alcohol, and an iodide derivative) worked as efficient catalysts for reversible chain transfer catalyzed polymerization (RTCP). Low-polydispersity (MJMn 1.2-1.3) polystyrenes and poly(methyl methaciylate)s with predicted molecular weights were obtained with a fairly high conversion. Attractive features of the alcohol catalysts include their high reactivity (a small amount being required), low or no toxicity, and low cost (cheapness). [Pg.159]

Furan polymers are derivatives of furfuryl alcohol and furfural. With an acid catalyst, polymerization occurs by the condensation route, which generates heat and a by-product of water. The exotherm must be controlled to prevent the water vapor from blistering and cracking the laminate. Furan resin catalysts should have exotherms above 65°F (18°C) but not over 85°F (30°C). [Pg.194]

Polystyrene-AlClj is a useful catalyst for synthetic reactions, which require both a dehydrating agent and a Lewis acid. Thus, acetals are obtained in good yield by the reaction of aldehyde, alcohol and polymeric AlClj in an organic inert solvent. [Pg.32]

Method of synthesis cationic polymerization of high purity Isobutylene and isoprene is used to produce butyl rubber in the presence of complex systems of catalysts polymerization is terminated by irreversible destruction of the propagating carbenium ion by the collapse of the ion pair, by hydrogen abstraction from the comonomer, by formation of stable allylic carbenium ions, or by reaction with nucleophilic species such as alcohols or amines ... [Pg.171]

In the presence of catalysts, polymerization occurs at lower temperatures for example, with BF3 stmcture 102 polymerizes at 150 A lot of different compounds were tested as catalysts, namely, carboxylic acids, their salts and esters, ethers, ketones, alcohols, nitromethane, metallic zinc, tin, orsodium. The best results were obtained with Lewis acids (SbCls, AICI3,... [Pg.494]

It is used as a catalyst in esterification, dehydration, polymerization and alkylation reactions. Converted by e.g., ihionyl chloride, to melhanesulphonyl chloride (mesyl chloride) which is useful for characterizing alcohols, amines, etc. as melhanesulphonyl (mesyl) derivatives. [Pg.258]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

Hydroxy-2-methylpropanenitrile is then reacted with methanol (or other alcohol) to yield methacrylate ester. Free-radical polymerization is initiated by peroxide or azo catalysts and produce poly(methyl methacrylate) resins having the following formula ... [Pg.1012]

Benzoyl peroxide Direct sunlight, sparks and open flames, shock and friction, acids, alcohols, amines, ethers, reducing agents, polymerization catalysts, metallic naph-thenates... [Pg.1207]

Tetrahydrofurfuryl alcohol is used in elastomer production. As a solvent for the polymerization initiator, it finds appHcation in the manufacture of chlorohydrin mbber. Additionally, tetrahydrofurfuryl alcohol is used as a catalyst solvent-activator and reactive diluent in epoxy formulations for a variety of apphcations. Where exceptional moisture resistance is needed, as for outdoor appHcations, furfuryl alcohol is used jointly with tetrahydrofurfuryl alcohol in epoxy adhesive formulations. [Pg.83]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Butynediol is more difficult to polymerize than propargyl alcohol, but it cyclotrimerizes to hexamethylolbenzene [2715-91 -5] (benzenehexamethanol) with a nickel carbonyl—phosphine catalyst (64) with a rhodium chloride—arsine catalyst a yield of 70% is claimed (65). [Pg.106]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Transesterification of a lower acrylate ester and a higher alcohol (102,103) can be performed using a variety of catalysts and conditions chosen to provide acceptable reaction rates and to minimize by-product formation and polymerization. [Pg.156]

Other Plastics Uses. The plasticizer range alcohols have a number of other uses in plastics hexanol and 2-ethylhexanol are used as part of the catalyst system in the polymerization of acrylates, ethylene, and propylene (55) the peroxydicarbonate of 2-ethylhexanol is utilized as a polymerization initiator for vinyl chloride various trialkyl phosphites find usage as heat and light stabHizers for plastics organotin derivatives are used as heat stabHizers for PVC octanol improves the compatibHity of calcium carbonate filler in various plastics 2-ethylhexanol is used to make expanded polystyrene beads (56) and acrylate esters serve as pressure sensitive adhesives. [Pg.450]

Polygas Olefins. Refinery propylene and butenes are polymerized with a phosphoric acid catalyst at 200°C and 3040—6080 kPa (30—60 atm) to give a mixture of branched olefins up to used primarily in producing plasticizer alcohols (isooctyl, isononyl, and isodecyl alcohol). Since the olefins are branched (75% have two or more CH groups) the alcohols are also branched. Exxon, BASE, Ruhrchemie (now Hoechst), ICl, Nissan, Getty Oil, U.S. Steel Chemicals (now Aristech), and others have all used this olefin source. [Pg.458]

A freshly made solution behaves as a strong monobasic acid. Neutralized solutions slowly become acidic because of hydrolysis to monofluorophosphoric acid and hydrofluoric acid. The anhydrous acid undergoes slow decomposition on distillation at atmospheric pressure, reacts with alcohols to give monofluorophosphoric acid esters, and is an alkylation (qv) and a polymerization catalyst. [Pg.226]

Tris(2,4-pentanedionato)iron(III) [14024-18-1], Fe(C H202)3 or Fe(acac)3, forms mby red rhombic crystals that melt at 184°C. This high spin complex is obtained by reaction of iron(III) hydroxide and excess ligand. It is only slightly soluble in water, but is soluble in alcohol, acetone, chloroform, or benzene. The stmcture has a near-octahedral arrangement of the six oxygen atoms. Related complexes can be formed with other P-diketones by either direct synthesis or exchange of the diketone into Fe(acac)3. The complex is used as a catalyst in oxidation and polymerization reactions. [Pg.438]


See other pages where Alcohol catalysts polymerization is mentioned: [Pg.609]    [Pg.135]    [Pg.222]    [Pg.135]    [Pg.314]    [Pg.2096]    [Pg.354]    [Pg.28]    [Pg.21]    [Pg.21]    [Pg.24]    [Pg.72]    [Pg.163]    [Pg.419]    [Pg.420]    [Pg.80]    [Pg.232]    [Pg.234]    [Pg.194]    [Pg.241]   


SEARCH



Alcohols polymerization

Catalysts polymerizing

Polymerized alcohols

© 2024 chempedia.info