Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aggregation tuning

The electrochemical behavior of heterometallic clusters has been reviewed clsewbcre."" The interest in examining clusters stems from their potential to act as "electron sinks " in principle, an aggregate of several metal atoms may be capable of multiple redox state changes. The incorporation of heterometals provides the opportunity to tune the electrochemical response, effects which should be maximized in very mixed"-metal clusters. Few very mixed -metal clusters have been subjected to detailed electrochemical studies the majority of reports deal with cyclic voltammetry only. Table XII contains a summary of electrochemical investigations of "very mixed"-metal clusters. [Pg.125]

The geometry and surface chemistry of the dendrimer assemblies can be varied through the addition of surfactants. These dendrimer/surfactant aggregates can be tuned to template the formation of the different phases of calcium carbonate [40]. In combination with hexadecyltrimethylammonium bromide (CTAB), small spherical aggregates were formed that induce the formation of vaterite. Over a period of five days, the vaterite was transformed into calcite. The use of the negatively charged surfactant, sodium dodecylsulfonate (SDS), result-... [Pg.154]

When supported complexes are the catalysts, two types of ionic solid were used zeolites and clays. The structures of these solids (microporous and lamellar respectively) help to improve the stability of the complex catalyst under the reaction conditions by preventing the catalytic species from undergoing dimerization or aggregation, both phenomena which are known to be deactivating. In some cases, the pore walls can tune the selectivity of the reaction by steric effects. The strong similarities of zeolites with the protein portion of natural enzymes was emphasized by Herron.20 The protein protects the active site from side reactions, sieves the substrate molecules, and provides a stereochemically demanding void. Metal complexes have been encapsulated in zeolites, successfully mimicking metalloenzymes for oxidation reactions. Two methods of synthesis of such encapsulated/intercalated complexes have been tested, as follows. [Pg.447]

The palladium phthalocyanine (67), developed by Mitsui Toatsu and Ciba58,59 is one of the leading phthalocyanine infrared absorbers for CD-R (Compact Disk-Rewritable) (see Chapter 9.13). Bulky groups (R) reduce undesirable molecular aggregation, which lowers the extinction coefficient and hence the absorptivity and reflectivity. Partial bromination allows fine tuning of the film absorbance and improves reflectivity. The palladium atom influences the position of the absorption band, the photostability and the efficiency of the radiationless transition from the excited state.58 It is marketed by Ciba as Supergreen.60... [Pg.574]

The tuning of electron injection and transport in PF has been undertaken by Shu s group [354], who introduced electron-deficient oxadiazole units as pendant groups in fluorene copolymer 257. The introduction of oxadiazole units into the PF can potentially improve the electron transport properties of the polymer, while their bulkiness can help to suppress aggregation effects (Chart 2.68). [Pg.150]

The catalysts can be obtained by a coprecipitation method consisting of two steps (Figure 6.2). In the first step, a stable suspension of protected metal nanoparticles is obtained according to the method reported by Schulz and co-workers [75-77]. The metal particles are prepared in the presence of a highly water-soluble ionic surfactant which is able, due to its nature, to modulate the particle size and to prevent their aggregation. Modifying parameters such as pH, temperature and surfactant concentration, it is possible to tune the metal particle size [71]. Moreover, the role of the... [Pg.184]

In aqueous media, they assemble into spherical capsules capable of encapsulating Nile Red with remarkably low CMC values (2 x 10 M for G1 and 3 x 10 M for G2). Similarly, the size of the aggregate derived from a related dendron-rod-dendron copolymer, composed of a phenylene vinylene rod capped on each end by amphiphilic polyether dendrons, could be tuned in the melt state by modifying the generation level of the dendron (Fig. 11.28 Lee et al. 2002). [Pg.280]

The prospective applications ofmolecular assemblies seem so wide that their limits are difficult to set. The sizes of electronic devices in the computer industry are close to their lower limits. One simply cannot fit many more electronic elements into a cell since the walls between the elements in the cell would become too thin to insulate them effectively. Thus further miniaturization of today s devices will soon be virtually impossible. Therefore, another approach from bottom up was proposed. It consists in the creation of electronic devices of the size of a single molecule or of a well-defined molecular aggregate. This is an enormous technological task and only the first steps in this direction have been taken. In the future, organic compounds and supramolecular complexes will serve as conductors, as well as semi- and superconductors, since they can be easily obtained with sufficient, controllable purity and their properties can be fine tuned by minor adjustments of their structures. For instance, the charge-transfer complex of tetrathiafulvalene 21 with tetramethylquinodimethane 22 exhibits room- temperature conductivity [30] close to that of metals. Therefore it could be called an organic metal. Several systems which could serve as molecular devices have been proposed. One example of such a system which can also act as a sensor consists of a basic solution of phenolophthalein dye 10b with P-cyciodextrin 11. The purple solution of the dye not only loses its colour upon the complexation but the colour comes back when the solution is heated [31]. [Pg.14]


See other pages where Aggregation tuning is mentioned: [Pg.2900]    [Pg.10]    [Pg.184]    [Pg.2]    [Pg.437]    [Pg.145]    [Pg.256]    [Pg.30]    [Pg.274]    [Pg.105]    [Pg.293]    [Pg.78]    [Pg.175]    [Pg.213]    [Pg.86]    [Pg.117]    [Pg.17]    [Pg.26]    [Pg.195]    [Pg.204]    [Pg.208]    [Pg.289]    [Pg.289]    [Pg.364]    [Pg.73]    [Pg.176]    [Pg.169]    [Pg.37]    [Pg.237]    [Pg.4]    [Pg.1059]    [Pg.246]    [Pg.3]    [Pg.87]    [Pg.259]    [Pg.21]    [Pg.203]    [Pg.240]    [Pg.463]    [Pg.223]    [Pg.129]    [Pg.159]    [Pg.528]   
See also in sourсe #XX -- [ Pg.736 ]




SEARCH



Tuning

© 2024 chempedia.info