Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption substrate sites

A more dramatic type of restmctiiring occurs with the adsorption of alkali metals onto certain fee metal surfaces [39]. In this case, multilayer composite surfaces are fomied in which the alkali and metal atoms are intemiixed in an ordered stmcture. These stmctiires involve the substitution of alkali atoms into substrate sites, and the details of the stmctiires are found to be coverage-dependent. The stmctiires are influenced by the repulsion between the dipoles fomied by neighbouring alkali adsorbates and by the interactions of the alkalis with the substrate itself [40]. [Pg.299]

The decreased CO stretch frequencies are easily rationalized as the result of adsorption on sites with a lower work function, as explained in the Appendix. The effect of a lower work function is that all orbitals of CO shift downward with respect to the Fermi level of the substrate. This shift of the occupied CO levels to higher binding energy has been observed in UPS spectra (see Fig. 3.20), while the shift of the unoccupied part of the 2tt -derived chemisorption orbital has been observed in inverse photoemission [33, 34, 45], The overall effect is that the bond between the metal and the CO becomes stronger while at the same time the intramolecular CO bond is weakened. [Pg.266]

When underpotential deposition adsorption/desorption takes place randomly at any substrate site M, the following random adsorptioncontrolling treatment is to be employed, and when the process is controlled by a two-dimensional nucleation-growth mechanism, the process analysis should be carried out according to Section ni.l.(b). [Pg.231]

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Diffraction is not limited to periodic structures [1]. Non-periodic imperfections such as defects or vibrations, as well as sample-size or domain effects, are inevitable in practice but do not cause much difSculty or can be taken into account when studying the ordered part of a structure. Some other forms of disorder can also be handled quite well in their own right, such as lattice-gas disorder in which a given site in the unit cell is randomly occupied with less than 100% probability. At surfaces, lattice-gas disorder is very connnon when atoms or molecules are adsorbed on a substrate. The local adsorption structure in the given site can be studied in detail. [Pg.1752]

The balance between these different types of bonds has a strong bearing on the resulting ordering or disordering of the surface. For adsorbates, the relative strength of adsorbate-substrate and adsorbate-adsorbate interactions is particularly important. Wlien adsorbate-substrate interactions dominate, well ordered overlayer structures are induced that are arranged in a superlattice, i.e. a periodicity which is closely related to that of the substrate lattice one then speaks of commensurate overlayers. This results from the tendency for each adsorbate to seek out the same type of adsorption site on the surface, which means that all adsorbates attempt to bond in the same maimer to substrate atoms. [Pg.1758]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Hurst (19) discusses the similarity in action of the pyrethrins and of DDT as indicated by a dispersant action on the lipids of insect cuticle and internal tissue. He has developed an elaborate theory of contact insecticidal action but provides no experimental data. Hurst believes that the susceptibility to insecticides depends partially on the cuticular permeability, but more fundamentally on the effects on internal tissue receptors which control oxidative metabolism or oxidative enzyme systems. The access of pyrethrins to insects, for example, is facilitated by adsorption and storage in the lipophilic layers of the epicuticle. The epicuticle is to be regarded as a lipoprotein mosaic consisting of alternating patches of lipid and protein receptors which are sites of oxidase activity. Such a condition exists in both the hydrophilic type of cuticle found in larvae of Calliphora and Phormia and in the waxy cuticle of Tenebrio larvae. Hurst explains pyrethrinization as a preliminary narcosis or knockdown phase in which oxidase action is blocked by adsorption of the insecticide on the lipoprotein tissue components, followed by death when further dispersant action of the insecticide results in an irreversible increase in the phenoloxidase activity as a result of the displacement of protective lipids. This increase in phenoloxidase activity is accompanied by the accumulation of toxic quinoid metabolites in the blood and tissues—for example, O-quinones which would block substrate access to normal enzyme systems. The varying degrees of susceptibility shown by different insect species to an insecticide may be explainable not only in terms of differences in cuticle make-up but also as internal factors associated with the stability of oxidase systems. [Pg.49]

Local breakdown of passive film results from a localized increase in the film dissolution rate at the anion adsorption sites that are attacked by chloride ions, as will be discussed later, in the same manner as substrate metal dissolution. Such acceleration of the dissolution rate was ascribed to the formation of metal chlorides24 or the local degeneration of film surface by the formation of surface electron levels.7... [Pg.236]

Inhibitors are species that bind to enzymes, modifying their activity. Competitive inhibitors bind at the same site as the substrate binds this is analogous to competitive adsorption in heterogeneous catalysis. The reaction scheme becomes ... [Pg.77]

In many cases the number of occupied adsorption sites is not equivalent to the number of unit cells. Often, repulsive interactions bet veen adsorbed species prevents filling of all sites and adsorption may only be possible if all neighboring sites are unoccupied. Adsorbate structures are described according to hoiv the neiv unit cell of adsorbate and substrate relate to the original unit cell of the substrate. Figure 5.7 shows a few examples along with the nomenclature used. [Pg.173]


See other pages where Adsorption substrate sites is mentioned: [Pg.10]    [Pg.31]    [Pg.218]    [Pg.124]    [Pg.46]    [Pg.1426]    [Pg.143]    [Pg.566]    [Pg.85]    [Pg.27]    [Pg.302]    [Pg.307]    [Pg.298]    [Pg.298]    [Pg.929]    [Pg.1682]    [Pg.1759]    [Pg.1763]    [Pg.1772]    [Pg.1781]    [Pg.57]    [Pg.34]    [Pg.236]    [Pg.23]    [Pg.245]    [Pg.244]    [Pg.269]    [Pg.279]    [Pg.441]    [Pg.173]    [Pg.34]    [Pg.34]    [Pg.44]    [Pg.112]    [Pg.203]    [Pg.155]    [Pg.158]   
See also in sourсe #XX -- [ Pg.490 , Pg.501 ]




SEARCH



Adsorption sites

Substrate adsorption

© 2024 chempedia.info