Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption sorption effect

The remaining vacuum pumps to be discussed in this chapter fall into a group which remove gas particles from systems by sorption effects such as adsorption, chemisorption/gettering and implantation. They tend to be used on systems where any contamination of the vacuum by pump fluids, lubricants, etc. must be avoided. However, those pumps that remove gas particles exclusively by temperature-dependent gas adsorption on molecular sieves or A1203 (adsorption pumps) will not be discussed. [Pg.103]

The catalytic activity of MePc depends on the nature of the ligand in the apical position and should therefore be solvent dependent.[56] From the chromatographic determination of the respective adsorption coefficients of the reaction partners in pre-catalytic conditions, a very pronounced activity difference is found depending on the nature of the solvent used.[64] However, the sequence of the adsorption coefficients is of zeolitic origin and reflects a sorption effect rather than a coordination effect. The respective values of the adsorption coefficients indicate that for the oxidation of alkanes, cyclohexane, with organic peroxide for example, in acetone the oxidant is enriched in the intracrystalline voids, resulting preferentially in peroxide decomposition. In excess cyclohexane, the substrate is enriched in the pores, so that every adsorbed peroxide molecule results in an efficient oxygenation. [Pg.214]

Values of reaction orders (Table 3) and competitive sorption effects mentioned in Section 3.3 could be quantified more satisfactorily using a adsorption kinetic model. The model was derived under the assumptions of constant volume reaction, nitrous oxide reacting from the gas phase (because of the small influence of nitrous oxide feed concentration on phenol selectivity), three times higher phenol sorption constant than benzene sorption constant (Kc6H5oh 3 Kc6H6, 3s derived from sorption simulation calculations), but without considering the dependency on temperature (reaction temperature 400°C) [5,7]. [Pg.853]

Kinetic modeling resulted an initial satisfactory approache to describe the experimental data. While with a power law model, activation energy could be estimated, with the adsorption model the competitive sorption effects at various feed concentrations could be described. [Pg.856]

Because of unfavorable sorption effects on paper that cause tailing, materials with lower adsorptivity were sought. Thus, cellulose acetate [35] and nitrocellulose [36,37] membranes were introduced. Cellulose acetate can be either prepared in the laboratory by treating cellulose with acetic anhydride, or it may be purchased from commercial sources. Cellulose acetate membranes are readily soluble in phenol, glacial acetic acid, dichloromethane and acetone. In part they can be solubilized in several solvent mixtures e.g., chloroform/ethanol (9 1 v/v). For detection (optical scanning) the foil can be made translucent by immersion in cottonseed oil, decalin, liquid paraffin or Whitemore oil 120. [Pg.422]

Sorption effects by the gel matrix may alter the values of and for certain solutes, and the use of against log plots to select a gel, takes into account neither those effects nor zone spreading in the column, and variations in flow-rate (which could arise, for example, from differences in viscosity of sample and eluant). Taken together these may have an important effect on the separation, and hence on the choice of the best gel for a particular purpose. The behaviour of small molecules on tightly cross-linked gels is profoundly influenced by adsorption, ion exclusion, ion exchange and various other processes which dominate the size differences between solutes. [Pg.146]

Periodic adsorption and desorption inside adsorbent particles, induced by the volume modulation, may lead to a heat of sorption effect which is dissipated through a heat exchange between the sorbent and the surroundings. When the heat exchange rate is comparable with the diffusion rate, another bimodal form for the frequency response characteristic curves is found [28,29]. [Pg.245]

The heats of sorption from 0.15 M solutions of NH4 ions and alkali chlorides were positive but were slow to reach equilibrium in the first adsorption/desorption cycles. Generally, the sorption effects have been much slower on the resin than the adsorptions on active carbons. The rate of the exchange process on the resins was clearly governed by the diffusion of the ions into and out of the resin which changed... [Pg.171]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

Adsorption. Many studies have been made of the adsorption of soaps and synthetic surfactants on fibers in an attempt to relate detergency behavior to adsorption effects. Relatively fewer studies have been made of the adsorption of surfactants by soils (57). Plots of the adsorption of sodium soaps by a series of carbon blacks and charcoals show that the fatty acid and the alkaU are adsorbed independently, within limits, although the presence of excess aLkaU reduces the sorption of total fatty acids (58). No straightforward relationship was noted between detergency and adsorption. [Pg.532]

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

Adsorption of lA of POMs with CV and Malachite Green (MG) on the polyurethane foams (PF) and some other adsorbents is investigated. While lA is fully adsorbed on the PF in wide pH range (0,4 M H SO - pH 4) extent of dye adsoi ption does not exceed 0,4%. lA are adsorbed faster then POMs. Extent of sorption of lA is 60-70% at 5 minutes and is complete after 15 minutes. lA can be eluted from PF most effectively by methylbutylketone, acetone or alcohols can be used too. [Pg.285]

In addition to effects on the concentration of anions, the redox potential can affect the oxidation state and solubility of the metal ion directly. The most important examples of this are the dissolution of iron and manganese under reducing conditions. The oxidized forms of these elements (Fe(III) and Mn(IV)) form very insoluble oxides and hydroxides, while the reduced forms (Fe(II) and Mn(II)) are orders of magnitude more soluble (in the absence of S( — II)). The oxidation or reduction of the metals, which can occur fairly rapidly at oxic-anoxic interfaces, has an important "domino" effect on the distribution of many other metals in the system due to the importance of iron and manganese oxides in adsorption reactions. In an interesting example of this, it has been suggested that arsenate accumulates in the upper, oxidized layers of some sediments by diffusion of As(III), Fe(II), and Mn(II) from the deeper, reduced zones. In the aerobic zone, the cations are oxidized by oxygen, and precipitate. The solids can then oxidize, as As(III) to As(V), which is subsequently immobilized by sorption onto other Fe or Mn oxyhydroxide particles (Takamatsu et al, 1985). [Pg.390]

Fig. 15-5 Comparative adsorption of several metals onto amorphous iron oxyhydroxide systems containing 10 M Fej and 0.1 m NaNOs. (a) Effect of solution pH on sorption of uncomplexed metals, (b) Comparison of binding constants for formation of soluble Me-OH complexes and formation of surface Me-O-Si complexes i.e. sorption onto Si02 particles, (c) Effect of solution pH on sorption of oxyanionic metals. (Figures (a), (c) reprinted with permission from Manzione, M. A. and Merrill, D. T. (1989). "Trace Metal Removal by Iron Coprecipitation Field Evaluation," EPRI report GS-6438, Electric Power Research Institute, California. Figure (b) reprinted with permission from Balistrieri, L. et al. (1981). Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean, Deep-Sea Res. 28A 101-121, Pergamon Press.)... Fig. 15-5 Comparative adsorption of several metals onto amorphous iron oxyhydroxide systems containing 10 M Fej and 0.1 m NaNOs. (a) Effect of solution pH on sorption of uncomplexed metals, (b) Comparison of binding constants for formation of soluble Me-OH complexes and formation of surface Me-O-Si complexes i.e. sorption onto Si02 particles, (c) Effect of solution pH on sorption of oxyanionic metals. (Figures (a), (c) reprinted with permission from Manzione, M. A. and Merrill, D. T. (1989). "Trace Metal Removal by Iron Coprecipitation Field Evaluation," EPRI report GS-6438, Electric Power Research Institute, California. Figure (b) reprinted with permission from Balistrieri, L. et al. (1981). Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean, Deep-Sea Res. 28A 101-121, Pergamon Press.)...
Phenanthrene dissolved in Triton X-100 solution was separated by sorption with three GACs with different particle size (4 12,12 20, and 20 40 mesh). The highest adsorption selectivity was obtained with the 20 40 mesh over a wide concentration range of phenanthrene and Triton X-100. The results demonstrate that the selective adsorption is potentially effective to reuse surfactants in a soil-washing process for the remediation of contaminated soils. [Pg.464]

Electrolytes are used to promote the exhaustion of direct or reactive dyes on cellulosic fibres they may also be similarly used with vat or sulphur dyes in their leuco forms. In the case of anionic dyes on wool or nylon, however, their role is different as they are used to facilitate levelling rather than exhaustion. In these cases, addition of electrolyte decreases dye uptake due to the competitive absorption of inorganic anions by the fibre and a decrease in ionic attraction between dye and fibre. In most discussions of the effect of electrolyte on dye sorption, attention is given only to the ionic aspects of interaction. In most cases, this does not create a problem and so most adsorption isotherms of water-soluble dyes are interpreted on the basis of Langmuir or Donnan ionic interactions only. There are, however, some observed cases of apparently anomalous behaviour of dyes with respect to electrolytes that cannot be explained by ionic interactions alone. [Pg.34]


See other pages where Adsorption sorption effect is mentioned: [Pg.51]    [Pg.3]    [Pg.214]    [Pg.221]    [Pg.194]    [Pg.355]    [Pg.194]    [Pg.256]    [Pg.80]    [Pg.243]    [Pg.182]    [Pg.26]    [Pg.736]    [Pg.187]    [Pg.253]    [Pg.736]    [Pg.1929]    [Pg.749]    [Pg.305]    [Pg.194]    [Pg.736]    [Pg.293]    [Pg.534]    [Pg.334]    [Pg.334]    [Pg.286]    [Pg.394]    [Pg.50]    [Pg.354]    [Pg.17]    [Pg.202]    [Pg.155]    [Pg.268]    [Pg.121]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Adsorption effect

Sorption adsorption (

Sorption effect

© 2024 chempedia.info