Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption isotherms characterization

Adsorption isotherm characterization filling process of the MCM-41 mesopores. [Pg.72]

Recall that these two results are valid for nondispersive equilibrium desorption of a bed, initially saturated throughout at a level of C°2 by a mobile phase without any solute species, when Langmuir adsorption isotherm characterizes the adsorption equilibrium between the solute in the mobile phase and the adsorbent. [Pg.506]

Adsorption isotherms are by no means all of the Langmuir type as to shape, and Brunauer [34] considered that there are five principal forms, as illustrated in Fig. XVII-7. TVpe I is the Langmuir type, roughly characterized by a monotonic approach to a limiting adsorption at presumably corresponds to a complete monolayer. Type II is very common in the case of physical adsorption... [Pg.617]

The channels in zeoHtes are only a few molecular diameters in size, and overlapping potential fields from opposite walls result in a flat adsorption isotherm, which is characterized by a long horizontal section as the relative pressure approaches unity (Fig. 6). The adsorption isotherms do not exhibit hysteresis as do those in many other microporous adsorbents. Adsorption and desorption are reversible, and the contour of the desorption isotherm foUows that of adsorption. [Pg.447]

Characterization. When siHca gel is used as an adsorbent, the pore stmcture determines the gel adsorption capacity. Pores are characterized by specific surface area, specific pore volume (total volume of pores per gram of solid), average pore diameter, pore size distribution, and the degree to which entrance to larger pores is restricted by smaller pores. These parameters are derived from measuring vapor adsorption isotherms, mercury intmsion, low angle x-ray scattering, electron microscopy, gas permeabiHty, ion or molecule exclusion, or the volume of imbibed Hquid (1). [Pg.491]

The development of microporosity during steam activation was examined by Burchell et al [23] in their studies of CFCMS monoliths. A series of CFCMS cylinders, 2.5 cm in diameter and 7.5 cm in length, were machined from a 5- cm thick plate of CFCMS manufactured from P200 fibers. The axis of the cylinders was machined perpendicular to the molding direction ( to the fibers). The cylinders were activated to bum-offs ranging from 9 to 36 % and the BET surface area and micropore size and volume determined from the Nj adsorption isotherms measured at 77 K. Samples were taken from the top and bottom of each cylinder for pore sfructure characterization. [Pg.186]

The adsorption of hydrocarbons by activated carbon is characterized by the development of adsorption isotherms, adsorption mass and energy balances, and dynamic adsorption zone flow through a fixed bed. [Pg.265]

In the systems characterized by more complex surface structure, consisting of patches of different size and different magnitude of the boundary field, the properties of adsorption isotherms have been found to depend on the... [Pg.270]

The adsorption behavior of homologous sodium alcohol sulfates at the interface can be characterized by the adsorption isotherms. However, the adsorption parameters of these isotherms are very sensitive to impurities present in the surfactant. Wiinstneck et al. [145] determined the equilibrium values of... [Pg.264]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

The samples were characterized by chemical analysis induced coupled plasma and atomic absorption techniques apparatus), nitrogen adsorption isotherms (at 77 K), XRD patterns ( Siemens diffractometer and (3uKa radiation), SEM observations (Hitachi S800 apparatus of the University C. Bernard, Lyon I) and TGA-DTA (Setaram 92-12 apparatus). The IR spectra were recorded with a Bruker IPS 48 FTIR spectrometer. [Pg.592]

As the reader might have noticed, many conclusions in electrocatalysis are based on results obtained with electrochemical techniques. In situ characterization of nanoparticles with imaging and spectroscopic methods, which is performed in a number of laboratories, is invaluable for the understanding of PSEs. Identification of the types of adsorption sites on supported metal nanoparticles, as well as determination of the influence of particle size on the adsorption isotherms for oxygen, hydrogen, and anions, are required for further understanding of the fundamentals of electrocatalysis. [Pg.551]

Catalyst characterization - Characterization of mixed metal oxides was performed by atomic emission spectroscopy with inductively coupled plasma atomisation (ICP-AES) on a CE Instraments Sorptomatic 1990. NH3-TPD was nsed for the characterization of acid site distribntion. SZ (0.3 g) was heated up to 600°C using He (30 ml min ) to remove adsorbed components. Then, the sample was cooled at room temperatnre and satnrated for 2 h with 100 ml min of 8200 ppm NH3 in He as carrier gas. Snbseqnently, the system was flashed with He at a flowrate of 30 ml min for 2 h. The temperatnre was ramped np to 600°C at a rate of 10°C min. A TCD was used to measure the NH3 desorption profile. Textural properties were established from the N2 adsorption isotherm. Snrface area was calcnlated nsing the BET equation and the pore size was calcnlated nsing the BJH method. The resnlts given in Table 33.4 are in good agreement with varions literature data. [Pg.299]

A typical adsorption process in electrocatalysis is chemisorption, characteristic primarily for solid metal electrodes. The chemisorbed substance is often chemically modified during the adsorption process. Then either the substance itself or some fragment of it is bonded chemically to the electrode. As electrodes mostly have physically heterogeneous surfaces (see Sections 4.3.3 and 5.5.5), the Temkin adsorption isotherm (Eq. 4.3.46) is suitable for characterizing the adsorption. [Pg.363]

Plots of an amount of material adsorbed versus pressure at a fixed temperature are known as adsorption isotherms. They are generally classified in the five main categories described by Brunauer and his co-workers (4). In Figure 6.2 adsorbate partial pressures (P) are normalized by dividing by the saturation pressure at the temperature in question (P0). Type I is referred to as Langmuir-type adsorption and is characterized by a monotonic approach to a limiting amount of adsorption, which presumably corresponds to formation of a monolayer. This type of behavior is that expected for chemisorption. [Pg.172]

The structure of the catalysts was characterized by X-ray diffraction, IR-spectroscopy and transmission electron microscopy, their thermal stability was followed by thermal analytical method. The specific surface area and pore size distribution of the samples were determined by nitrogen adsorption isotherms. [Pg.268]

The determination of adsorption isotherms at liquid-solid interfaces involves a mass balance on the amount of polymer added to the dispersion, which requires the separation of the liquid phase from the particle phase. Centrifugation is often used for this separation, under the assumption that the adsorption-desorption equilibrium does not change during this process. Serum replacement (6) allows the separation of the liquid phase without assumptions as to the configuration of the adsorbed polymer molecules. This method has been used to determine the adsorption isotherms of anionic and nonionic emulsifiers on various types of latex particles (7,8). This paper describes the adsorption of fully and partially hydrolyzed PVA on different-size PS latex particles. PS latex was chosen over polyvinyl acetate (PVAc) latex because of its well-characterized surface PVAc latexes will be studied later. [Pg.78]

Many adsorbents, particularly the amorphous adsorbents, are characterized by their pore size distribution. The distribution of small pores is usually determined by analysis, using one of several available methods, of a cryogenic nitrogen adsorption isotherm, although other probe molecules are also used. The distribution of large pores is usually determined by mercury porisimetry [Gregg and Sing, gen. refs.]. [Pg.8]


See other pages where Adsorption isotherms characterization is mentioned: [Pg.126]    [Pg.171]    [Pg.221]    [Pg.126]    [Pg.171]    [Pg.221]    [Pg.415]    [Pg.92]    [Pg.1500]    [Pg.36]    [Pg.247]    [Pg.255]    [Pg.264]    [Pg.269]    [Pg.764]    [Pg.260]    [Pg.5]    [Pg.5]    [Pg.42]    [Pg.355]    [Pg.22]    [Pg.138]    [Pg.240]    [Pg.244]    [Pg.31]    [Pg.180]    [Pg.209]    [Pg.210]    [Pg.838]    [Pg.274]    [Pg.6]    [Pg.212]    [Pg.219]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Adsorption characterization

Adsorption characterized

© 2024 chempedia.info