Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption irreversibility, effect

A discussion of the adsorption of water on oxides would be incomplete without some reference to the irreversible effects which are often encountered when samples of oxide, hydroxide or oxide-hydroxide are exposed to the vapour. These effects ( low-temperature ageing ), which manifest themselves in changes in surface area, in pore structure and sometimes in the lattice structure itself, are complex and difficult to reproduce exactly. ... [Pg.280]

Adsorption is effectively irreversible. Desorption of the molecule requires simultaneous detachment of all adsorbed segments. [Pg.5]

Because polymer adsorption is effectively irreversible, and because adsorption and floe growth occur simultaneously, flocculation is a non-equilibrium process. As a result, performance is largely determined by the kinetics of adsorption and aggregation. Both of these can be regarded as collision processes involving solid particles and polymer molecules. In each case, collisions can arise due to either Brownian motion or agitation of the suspension. The collision frequency v between particles and polymer molecules can be estimated from °... [Pg.5]

In most cases, polymer adsorption is considered irreversible that is, it does not decrease as polymer concentration decreases (Szabo, 1979 Lakatos et al., 1979 Gramain and Myard, 1981). The irreversible effect is caused by polymer adsorption on rock. However, this is not exactly true because small amounts of polymer can be removed from porous rock using prolonged exposure to water or brine injection. Usually, however, the rate of release is so small that it is not possible to measure the concentrations accurately. It is thus more accurate to state that the rate of polymer retention is much greater than the rate of polymer removal. Retention also may occur when flow rates are suddenly increased. This process is called hydrodynamic retention, which is reversible (Green and Willhite, 1998). [Pg.159]

The effect of the interaction of these acid phosphatases with the clay surfaces is better explained by a pH-dependent modification of the enzymes. This can explain the irreversible effects that are observed when the pH of adsorption is different from the pH at which the phos-phohydrolase activity is measured. [Pg.100]

A modification of the liquid phase from a low pH or ionic strength to higher values induces an irreversible effect on adsorption and modification of conformation of these phosphohydrolases. [Pg.100]

An example of the time effects in irreversible adsorption of a surfactant system is shown in Fig. XI-8 for barium dinonylnapthalene sulfonate (an oil additive) adsorbing on Ti02 (anatase). Adsorption was ineversible for aged systems, but much less so for those equilibrating for a short time. The adsorption of aqueous methylene blue (note Section XI-4) on TiOi (anatase) was also irreversible [128]. In these situations it seems necessary to postulate at least a two-stage sequence, such as... [Pg.405]

The limits of pore size corresponding to each process will, of course, depend both on the pore geometry and the size of the adsorbate molecule. For slit-shaped pores the primary process will be expected to be limited to widths below la, and the secondary to widths between 2a and 5ff. For more complicated shapes such as interstices between small spheres, the equivalent diameter will be somewhat higher, because of the more effective overlap of adsorption fields from neighbouring parts of the pore walls. The tertiary process—the reversible capillary condensation—will not be able to occur at all in slits if the walls are exactly parallel in other pores, this condensation will take place in the region between 5hysteresis loop and in a pore system containing a variety of pore shapes, reversible capillary condensation occurs in such pores as have a suitable shape alongside the irreversible condensation in the main body of pores. [Pg.244]

In the analytical chromatographic process, mixtures are separated either as individual components or as classes of similar materials. The mixture to be separated is first placed in solution, then transferred to the mobile phase to move through the chromatographic system. In some cases, irreversible interaction with the column leaves material permanently attached to the stationary phase. This process has two effects because the material is permanently attached to the stationary phase, it is never detected as leaving the column and the analysis of the mixture is incomplete additionally, the adsorption of material on the stationary phase alters the abiHty of that phase to be used in future experiments. Thus it is extremely important to determine the ultimate fate of known materials when used in a chromatographic system and to develop a feeling for the kinds of materials in an unknown mixture before use of a chromatograph. [Pg.105]

There are different reasons to discard a column a column can be damaged by irreversible adsorption of reactive polymer samples. Small amounts of styrene oligomers are known to permanently elute from styrene-divinylbenzene materials with tetrahydrofuran as the eluent, which means a continuous shear degradation of the separation material and consequently a decrease of the packing quality this observation is very important if fractions are collected and used for further analyses, e.g., for the determination of infrared (IR) spectra. One can presume that similar effects are present with other organic materials too. [Pg.435]

Early studies on oxide films stripped from iron showed the presence of chromium after inhibition in chromate solutionand of crystals of ferric phosphate after inhibition in phosphate solutions. More recently, radio-tracer studies using labelled anions have provided more detailed information on the uptake of anions. These measurements of irreversible uptake have shown that some inhibitive anions, e.g. chromateand phosphate are taken up to a considerable extent on the oxide film. However, other equally effective inhibitive anions, e.g. benzoate" pertechnetate and azelate , are taken up to a comparatively small extent. Anions may be adsorbed on the oxide surface by interactions similar to those described above in connection with adsorption on oxide-free metal surfaces. On the oxide surface there is the additional possibility that the adsorbed anions may undergo a process of ion exchange whereby... [Pg.817]

Hurst (19) discusses the similarity in action of the pyrethrins and of DDT as indicated by a dispersant action on the lipids of insect cuticle and internal tissue. He has developed an elaborate theory of contact insecticidal action but provides no experimental data. Hurst believes that the susceptibility to insecticides depends partially on the cuticular permeability, but more fundamentally on the effects on internal tissue receptors which control oxidative metabolism or oxidative enzyme systems. The access of pyrethrins to insects, for example, is facilitated by adsorption and storage in the lipophilic layers of the epicuticle. The epicuticle is to be regarded as a lipoprotein mosaic consisting of alternating patches of lipid and protein receptors which are sites of oxidase activity. Such a condition exists in both the hydrophilic type of cuticle found in larvae of Calliphora and Phormia and in the waxy cuticle of Tenebrio larvae. Hurst explains pyrethrinization as a preliminary narcosis or knockdown phase in which oxidase action is blocked by adsorption of the insecticide on the lipoprotein tissue components, followed by death when further dispersant action of the insecticide results in an irreversible increase in the phenoloxidase activity as a result of the displacement of protective lipids. This increase in phenoloxidase activity is accompanied by the accumulation of toxic quinoid metabolites in the blood and tissues—for example, O-quinones which would block substrate access to normal enzyme systems. The varying degrees of susceptibility shown by different insect species to an insecticide may be explainable not only in terms of differences in cuticle make-up but also as internal factors associated with the stability of oxidase systems. [Pg.49]

The properties of an organic tracing compound should minimize loss while in transit. There are two main sources of dye loss, non-adsorptive loss and adsorptive loss. Nonadsorptive losses can be due, among other reasons, to photochemical decomposition, chemical decay, pH effects, and biodegradation of the compound by microorganisms. Adsorption of the tracer onto both organic and inorganic substrates is often irreversible and can be a source of much loss. [Pg.212]

Gomez R, Femandez-Vega A, Feliu JM, Aldaz A. 1993. Hydrogen evolution on Pt singlecrystal surfaces—Effects of Irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on Pt(lOO). J Phys Chem 97 4769-4776. [Pg.241]

Silica gels with mean pore diameters of 5-15 nm and surface areas of 150-600 m /g have been preferred for the separation of low molecular weight samples, while silica gels with pore diameters greater than 30 nm are preferred for the separation, of biopolymers to avoid restricting the accessibility of the solutes to the stationary phase [15,16,29,34]. Ideally, the pore size distribution should be narrow and symmetrical about the mean value. Micropores are particularly undesirable as they may give rise to size-exclusion effects or irreversible adsorption due to... [Pg.164]

Another important type of physical chemical interaction that may alter absorption is that of drug binding or adsorption onto the surface of another material. As with complexation and micellarization, adsorption will reduce the effective concentration gradient between gut fluids and the bloodstream, which is the driving force for passive absorption. While adsorption frequently reduces the rate of absorption, the interaction is often readily reversible and will not affect the extent of absorption. A major exception is adsorption onto charcoal, which in many cases appears to be irreversible, at least during the time of residence within the GIT. As a result, charcoal often reduces the extent of drug absorption. Indeed, this fact... [Pg.63]

In order to prevent the irrevisible adhesion of MEMS microstructures, several studies have been performed to alter the surface of MEMS, either chemically or physically. Chemical alterations have focused on the use of organosilane self-assembled monolayers (SAMs), which prevent the adsorption of ambient moisture and also reduce the inherent attractive forces between the microstructures. Although SAMs are very effective at reducing irreversible adhesion in MEMs, drawbacks include irreproducibility, excess solvent use, and thermal stability. More recent efforts have shifted towards physical alterations in order to increase the surface roughness of MEMS devices. [Pg.52]


See other pages where Adsorption irreversibility, effect is mentioned: [Pg.213]    [Pg.115]    [Pg.314]    [Pg.614]    [Pg.170]    [Pg.285]    [Pg.361]    [Pg.3086]    [Pg.509]    [Pg.148]    [Pg.56]    [Pg.299]    [Pg.204]    [Pg.818]    [Pg.144]    [Pg.369]    [Pg.338]    [Pg.338]    [Pg.267]    [Pg.285]    [Pg.268]    [Pg.211]    [Pg.219]    [Pg.583]    [Pg.197]    [Pg.370]    [Pg.90]    [Pg.958]    [Pg.197]    [Pg.702]    [Pg.377]    [Pg.106]   


SEARCH



Adsorption effect

Irreversible adsorption

Irreversible effects

© 2024 chempedia.info