Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption acoustic mass sensors

The adsorption and desorption isotherms of an inert gas (classically N2 at 77 K) on an outgassed sample are determined as a function of the relative pressure (Prei = p/Po/ the ratio between the applied pressure and the saturation pressure. The adsorption isotherm is determined by measuring the quantity of gas adsorbed for each value of p/po by a gravimetric or a volumetric method (less accurate but simpler). A surface acoustic wave device can also be used as a mass sensor or microbalance in order to determine the adsorption isotherms of small thin films samples (only 0.2 cm of sample are required in the cell) [42,43]. [Pg.80]

Surface acoustic waves (SAW), which are sensitive to surface changes, are especially sensitive to mass loading and theoretically orders of magnitude more sensitive than bulk acoustic waves [43]. Adsorption of gas onto the device surface causes a perturbation in the propagation velocity of the surface acoustic wave, this effect can be used to observe very small changes in mass density of 10 g/cm (the film has to be deposited on a piezoelectric substrate). SAW device can be useful as sensors for vapour or solution species and as monitors for thin film properties such as diffusivity. They can be used for example as a mass sensor or microbalance to determine the adsorption isotherms of small thin film samples (only 0.2 cm of sample are required in the cell) [42]. [Pg.96]

The key feature of all acoustic wave sensors for detecting vapors is that measurable characteristics of the acoustic wave is altered as a result of adsorption on the surface of a receptive layer or absorption into the bulk of a thin layer (Figure 3). After sorption of the vapor by a thin film on top of the acoustic resonator equilibrium conditions are established and as a consequence of the increased mass or more accurately the change in the phase velocity of the acoustic wave a signal is created. Surface coatings generally enhance the sorption of vapors with the key properties of selectivity and sensitivity while affording reversibility. Typically, rubbery polymers were used on SAW devices such as polyisobutylene or substituted polysiloxanes but also self-assembled... [Pg.4409]

Surface mass changes can result from sorptive interactions (i.e., adsorption or absorption) or chemical reactions between analyte and coating, and can be used for sensing applications in bodi liquid and gas phases. Although the absolute mass sensitivity of the uncoated sensor depends on the nature of the piezoelectric substrate, device dimensions, frequoicy of operation, and the acoustic mode that is utilized, a linear dependence is predicted in all cases. This allows a very general description of the working relationship between mass-loading and frequency shift, A/ , for AW devices to be written ... [Pg.225]

Quartz Crystal Microbalance (QCM) sensors detect changes in mass adsorption at an interface and may represent an alternative sensor technology for the study of biospecific interactions in real-time [78], The operating principle of these sensors is based on changes of frequency in acoustic shear waves in the substrate of the sensor. When the QCM system is used in piezoelectric detection mode, the resulting frequency will shift in direct proportion to molecular mass adsorbed at the surface of the sensor [79]. [Pg.210]

Kg. 1.9 Schematic diagrams of mass-sensitive gas sensors (a, b) quartz crystal microbalance (QCM) device (c) surface acoustic wave (SAW) device (d, e) microcantilever - (d) dynamic mode absorption of analyte molecules in a sensor layer leads to shift in resonance frequency, and (e) static mode the cantilever bends owing to adsorption of analyte molecules and change of surface stress at the cantilever surface (Reprinted with permission from Battison et al. (2001). Copyright 2001 Elsevier)... [Pg.21]


See other pages where Adsorption acoustic mass sensors is mentioned: [Pg.330]    [Pg.246]    [Pg.111]    [Pg.817]    [Pg.168]    [Pg.490]    [Pg.128]    [Pg.75]    [Pg.235]    [Pg.11]    [Pg.276]    [Pg.323]    [Pg.903]    [Pg.270]   
See also in sourсe #XX -- [ Pg.1020 ]




SEARCH



Mass sensors

© 2024 chempedia.info