Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbents classifications

Figure 15. Schematic energy-level diagram for metal-adsorbate classification. Reprinted with permission from S. A. Wasileski et al., J. Am. Chem. Soc., 124, (2002) 6796. Copyright 2002, American Chemical Society. Figure 15. Schematic energy-level diagram for metal-adsorbate classification. Reprinted with permission from S. A. Wasileski et al., J. Am. Chem. Soc., 124, (2002) 6796. Copyright 2002, American Chemical Society.
The basis of the classification is that each of the size ranges corresponds to characteristic adsorption effects as manifested in the isotherm. In micropores, the interaction potential is significantly higher than in wider pores owing to the proximity of the walls, and the amount adsorbed (at a given relative pressure) is correspondingly enhanced. In mesopores, capillary condensation, with its characteristic hysteresis loop, takes place. In the macropore range the pores are so wide that it is virtually impossible to map out the isotherm in detail because the relative pressures are so close to unity. [Pg.25]

In a typical amorphous adsorbent the distribution of pore size may be very wide, spanning the range from a few nanometers to perhaps one micrometer. Siace different phenomena dominate the adsorptive behavior ia different pore size ranges, lUPAC has suggested the foUowiag classification ... [Pg.254]

Pore size is also related to surface area and thus to adsorbent capacity, particularly for gas-phase adsorption. Because the total surface area of a given mass of adsorbent increases with decreasing pore size, only materials containing micropores and small mesopores (nanometer diameters) have sufficient capacity to be usehil as practical adsorbents for gas-phase appHcations. Micropore diameters are less than 2 nm mesopore diameters are between 2 and 50 nm and macropores diameters are greater than 50 nm, by lUPAC classification (40). [Pg.275]

The term alumina hydrates or hydrated aluminas is used in industry and commerce to designate aluminum hydroxides. These compounds are tme hydroxides and do not contain water of hydration. Several forms are known a general classification is shown in Figure 1. The most weU-defined crystalline forms ate the trihydroxides, Al(OH) gibbsite [14762-49-3], bayerite [20257-20-9], and nordstrandite [13840-05-6], In addition, two aluminum oxide—hydroxides, AIO(OH), boelimite [1318-23-6] and diaspote [14457-84-2], have been clearly defined. The existence of several other forms of aluminum hydroxides have been claimed. However, there is controversy as to whether they ate truly new phases or stmctures having distorted lattices containing adsorbed or intedameUar water and impurities. [Pg.167]

Adsorption of dispersants at the soHd—Hquid interface from solution is normally measured by changes in the concentration of the dispersant after adsorption has occurred, and plotted as an adsorption isotherm. A classification system of adsorption isotherms has been developed to identify the mechanisms that may be operating, such as monolayer vs multilayer adsorption, and chemisorption vs physical adsorption (8). For moderate to high mol wt polymeric dispersants, the low energy (equiUbrium) configurations of the adsorbed layer are typically about 3—30 nm thick. Normally, the adsorption is monolayer, since the thickness of the first layer significantly reduces attraction for a second layer, unless the polymer is very low mol wt or adsorbs by being nearly immiscible with the solvent. [Pg.148]

Flat Surface Isotherm Equations The classification of isotherm equations into two broad categories for flat surfaces and pore filling reflec ts their origin. It does not restrict equations developed for flat surfaces from being apphed successfully to describe data for porous adsorbents. [Pg.1505]

There have been few satisfactory demonstrations that decompositions of hydrides, carbides and nitrides proceed by interface reactions, i.e. either nucleation and growth or contracting volume mechanisms. Kinetic studies have not usually been supplemented by microscopic observations and this approach is not easily applied to carbides, where the product is not volatile. The existence of a sigmoid a—time relation is not, by itself, a proof of the occurrence of a nucleation and growth process since an initial slow, or very slow, process may represent the generation of an active surface, e.g. poison removal, or the production of an equilibrium concentration of adsorbed intermediate. The reactions included below are, therefore, tentative classifications based on kinetic indications of interface-type processes, though in most instances this mechanistic interpretation would benefit from more direct experimental support. [Pg.155]

H. Ohtani, C.-T. Kao, M.A.V. Hove, and G. Somorjai, A tabulation and classification of the stmctures of clean solid surfaces and of adsorbed atomic and molecular monolayes as determined from low energy electron diffraction patterns, Progress in Surface Science 23(2,3), 155-316 (1986) and reference therein. [Pg.85]

It has been proven by experiment that there are donor acceptor atoms and molecules of absorbate and their classification as belonging to one or another type is controlled not only by their chemical nature but by the nature of adsorbent as well (see, for instance [18, 21, 203-205]). From the standpoint of the electron theory of chemisorption it became possible to explain the effect of electron adsorption [206] as well as phenomenon of luminescence of radical recombination during chemisorption [207]. The experimental proof was given to the capability of changing of one form of chemisorption into another during change in the value of the Fermi level in adsorbent [208]. [Pg.92]

In conclusion of this Section let us dwell on another important topic related to possible from our stand-point classification of sensors on crystal type of adsorbent. [Pg.107]

The adsorption capacities of the adsorbents are usually determined from modeling of the adsorption isotherms according to the Giles s classification [36] (Figure 15.1). [Pg.448]

O. D. Sanni, M. S. Wagner, D. G. Briggs, D. G. Castner and J. C. Vickerman, Classification of adsorbed protein static ToF SIMS spectra by principal component analysis and neural networks, Surface and Interface Analysis, 33, 715 728 (2002). [Pg.456]

Table 16-4 shows the IUPAC classification of pores by size. Micropores are small enough that a molecule is attracted to both of the opposing walls forming the pore. The potential energy functions for these walls superimpose to create a deep well, and strong adsorption results. Hysteresis is generally not observed. (However, water vapor adsorbed in the micropores of activated carbon shows a large hysteresis loop, and the desorption branch is sometimes used with the Kelvin equation to determine the pore size distribution.) Capillary condensation occurs in mesopores and a hysteresis loop is typically found. Macropores form important paths for molecules to diffuse into a par-... [Pg.8]

Adsorption HPLC is the classification in which the highly polar silica particles are exposed (no adsorbed or bonded liquid phase). Aluminum oxide particles fit this description too and are also readily available as the stationary phase. As mentioned earlier, this classification can also be thought of as normal phase... [Pg.375]

The advantage of equation 17.14 is that it may be fitted to all known shapes of adsorption isotherm. In 1938, a classification of isotherms was proposed which consisted of the five shapes shown in Figure 17.5 which is taken from the work of Brunauer et alSu Only gas-solid systems provide examples of all the shapes, and not all occur frequently. It is not possible to predict the shape of an isotherm for a given system, although it has been observed that some shapes are often associated with a particular adsorbent or adsorbate properties. Charcoal, with pores just a few molecules in diameter, almost always gives a Type I isotherm. A non-porous solid is likely to give a Type II isotherm. If the cohesive forces between adsorbate molecules are greater than the adhesive forces between adsorbate and adsorbent, a Type V isotherm is likely to be obtained for a porous adsorbent and a Type III isotherm for a non-porous one. [Pg.985]

The three generic classifications of hydrogen storage materials are reversible metal hydrides, non-reversible chemical hydrides, and adsorbent materials. Reversible metal hydride materials and adsorbents can be recharged with hydrogen without removing them from the vehicle, while non-reversible chemical hydride materials must be removed from the vehicle in order to be recharged. [Pg.43]

A typical N2 adsorption measurement versus relative pressure over a solid that has both micropores and mesopores first involves essentially a mono-layer coverage of the surface up to point B shown in isotherm IV (lUPAC classification) in Figure 13.1. Up to and near point B the isotherm is similar to a Langmuir isotherm for which equilibrium is established between molecules adsorbing from the gas phase onto the bare surface and molecules desorbing from the adsorbed layer. The volume of adsorbed N2 that covers a monolayer volume, hence the surface area of N2 can then be determined from the slope of the linearized Langmuir plot when P/V is plotted against P ... [Pg.406]

Based on their molecular properties as well as the properties of the solvent, each inorganic or organic contaminant exhibits an adsorption isotherm that corresponds to one of the isotherm classifications just described. Figure 5.1 illustrates these isotherms for different organic contaminants, adsorbed either from water or hexane solution on kaolinite, attapulgite, montmorillonite, and a red Mediterranean soil (Yaron et al. 1996). These isotherms may be used to deduce the adsorption mechanism. [Pg.97]


See other pages where Adsorbents classifications is mentioned: [Pg.94]    [Pg.94]    [Pg.94]    [Pg.94]    [Pg.1870]    [Pg.252]    [Pg.515]    [Pg.1500]    [Pg.1500]    [Pg.1809]    [Pg.296]    [Pg.397]    [Pg.404]    [Pg.9]    [Pg.556]    [Pg.28]    [Pg.74]    [Pg.5]    [Pg.197]    [Pg.185]    [Pg.795]    [Pg.111]    [Pg.8]    [Pg.58]    [Pg.317]    [Pg.82]    [Pg.299]    [Pg.231]    [Pg.275]    [Pg.20]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Adsorbed classification

© 2024 chempedia.info