Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adrenaline cell receptors

For instance, if the hormone adrenalin arrives at a liver cell and binds to the adrenalin-specific receptor embedded in its membrane, this leads to a whole cascade of reactions involving a G-protein, an effector catalysing the synthesis of cyclic adenosin monophosphate (AMP) and eventually results in the export of glucose from the cell (Fig. 2.4). Another GTP binding protein, Ras, is important for the regulation of cell growth and differentiation. (Mutations of this protein are notorious for causing a variety of cancers.)... [Pg.24]

M.p. 103°C. Noradrenaline is released in the adrenal medulla with adrenaline, and also at the sympathetic nerve endings. Its release from a nerve fibre is followed by binding to a receptor molecule on the next nerve or muscle fibre, probably causing a change in the electrical charge of the receptor-cell membrane. Biosynthetically it normally serves as a precursor for adrenaline. [Pg.282]

Adrenaline (epinephrine) is a catecholamine, which is released as a neurotransmitter from neurons in the central nervous system and as a hormone from chromaffin cells of the adrenal gland. Adrenaline is required for increased metabolic and cardiovascular demand during stress. Its cellular actions are mediated via plasma membrane bound G-protein-coupled receptors. [Pg.42]

The biological actions of adrenaline and noradrenaline are mediated via nine different G-protein-coupled receptors, which are located in the plasma membrane of neuronal and nonneuronal target cells. These recqrtors are divided into two different groups, a-adrenergic receptors and P-adrenergic recqrtors (see P-adrenergic system). [Pg.43]

Heterologous desensitisation refers to the desensitisation of the response to one agonist by the application of a different agonist. For example, desensitisation of a response to adrenaline by application of 5-HT is mediated by protein kinase A or protein kinase C because these kinases can phosphorylate receptors which are not occupied by agonist. Phosphorylation disrupts the receptor-G-protein interaction and induces the binding of specific proteins, arrestins which enhance receptors internalisation via clathrin-coated pits. Thus desensitisation of G-protein-coupled receptors results in a decrease in the number of functional receptors on the cell surface. [Pg.74]

Fig. 2. An adrenaline molecule (1) binds to its binding site on the extracellular site of an adrenaline receptor (2). Thereby, the exchange of GDP by GTP in the Ga subunit of a hetero-trimeric G protein (3) is induced, followed by the dissociation of the Ga and Gpr subunits. G now binds and stimulates its effector adenylate cyclase (4), which produces cyclic AMP (5) from ATP (6). This second messenger starts a cascade of enzymatic reactions, which alter the behavior of the cell via several phosphorylation steps... [Pg.64]

A large and diverse group of proteins, including enzymes, cytoskeleton, contractile proteins, and receptors, have been shown to be modified by calpains. Thus, a number of enzymes such as tyrosine hydrolase, tryptophan hydrolase, transglutaminase, protein kinase C, and membrane Ca2+-ATPase are activated by calpain proteolysis [38]. Several receptor proteins, in particular receptors for steroid hormones, growth factors, and adrenaline, are modulated by calpains, which participate also in platelet activation, cell fusion, and mitosis [39], Although the physiological roles of calpains continue to be un-... [Pg.40]

Adrenaline increases the rate of gluconeogenesis it binds to the a-receptor on the surface of the liver cell, which results in an increase in cytosolic concentration of Ca " ions (Chapter 12). This increases the activity of the Ca " -catmodulin-dependent protein kinase which phosphory-lates and causes similar changes in the activities of the enzymes PFK-2 and pyruvate kinase to those resulting from activation of cyclic-AMP-dependent protein kinase. Hence Ca " ions increase the rate of gluconeogenesis. [Pg.124]

Figure 12.6 Effector mechanism activation of adenyi cyclase via a G-protein. The activation of adenyi cyclase, which resides on the cytosolic side of the cell membrane, is mediated through the membrane-bound G-protein system (see below for biochemistry and role of the G-protein). An example is adrenaline binding to the p-receptor. Figure 12.6 Effector mechanism activation of adenyi cyclase via a G-protein. The activation of adenyi cyclase, which resides on the cytosolic side of the cell membrane, is mediated through the membrane-bound G-protein system (see below for biochemistry and role of the G-protein). An example is adrenaline binding to the p-receptor.
Adrenergic receptors are located throughout the body on neuronal and nonneuronal cells where they mediate a diverse range of responses to the endogenous catecholamines adrenaline and noradrenaline. To date, nine... [Pg.162]

The adrenal medulla synthesizes two catecholamine hormones, adrenaline (epinephrine) and noradrenaline (norepinephrine) (Figure 1.8). The ultimate biosynthetic precursor of both is the amino acid tyrosine. Subsequent to their synthesis, these hormones are stored in intracellular vesicles, and are released via exocytosis upon stimulation of the producer cells by neurons of the sympathetic nervous system. The catecholamine hormones induce their characteristic biological effects by binding to one of two classes of receptors, the a- and )S-adrenergic receptors. These receptors respond differently (often oppositely) to the catecholamines. [Pg.21]

Dopamine is an intermediate product in the biosynthesis of noradrenaline. Furthermore it is an active transmitter by itself in basal ganglia (caudate nucleus), the nucleus accumbens, the olfactory tubercle, the central nucleus of the amygdala, the median eminence and some areas in the frontal cortex. It is functionally important, for example in the extra-pyramidal system and the central regulation of emesis. In the periphery specific dopamine receptors (Di-receptors) can be found in the upper gastrointestinal tract, in which a reduction of motility is mediated, and on vascular smooth muscle cells of splanchnic and renal arteries. Beside its effect on specific D-receptors, dopamine activates, at higher concentrations, a- and -adrenoceptors as well. Since its clinical profile is different from adrenaline and noradrenaline there are particular indications for dopamine, like situations of circulatory shock with a reduced kidney perfusion. Dopamine can dose-dependently induce nausea, vomiting, tachyarrhythmia and peripheral vasoconstriction. Dopamine can worsen cardiac ischaemia. [Pg.304]

The switch for the activation of an intracellular signaling pathway is in most cases an increase in the concentration of the freely circulating hormone. This leads to an increase in the concentration of the hormone-receptor complex, which results in an increased activation of subsequent reactions in the cell. The concentration of the circulating hormone is thus the main regulatory parameter in cellular conummication. The relation between hormone concentration, binding of the hormone to the receptor, and subsequent reaction in the cell is illustrated in fig. 3.7 for the case of adrenaline and the P-adrenergic receptor. [Pg.134]

Fig. 5.6. Topology of the P-adrenergic receptor of hamster. The primary structure is shown of the P-receptor for adrenaline from hamster, with the assumed topology of the seven transmembrane helices. The extracellular domain is shown at the top of the picture. The interface of the ceU membrane is indicated by the dashed line. The filled squares show glycosylation sites. Amino adds not required for ligand binding, according to mutagenesis studies, are shown as open squares. Reprinted with permission of the American Journal of Respiratory Cell and Molecular Biology (1989), 1, No.2, p.82. Fig. 5.6. Topology of the P-adrenergic receptor of hamster. The primary structure is shown of the P-receptor for adrenaline from hamster, with the assumed topology of the seven transmembrane helices. The extracellular domain is shown at the top of the picture. The interface of the ceU membrane is indicated by the dashed line. The filled squares show glycosylation sites. Amino adds not required for ligand binding, according to mutagenesis studies, are shown as open squares. Reprinted with permission of the American Journal of Respiratory Cell and Molecular Biology (1989), 1, No.2, p.82.
The interaction of the Pycomplex with G-protein coupled receptor kinases (see 5.3.4, P-adrenergic receptor kinase, PARK) appears to be of special regulatory importance. The function of the Py-complex in this system is shown in Fig. 5.9. The Py-complex binds specifically to the PARK and translocates this to the cell membrane. The translocation of PARK is necessary to switch off and modulate signal transmission via adrenaline. [Pg.205]

The bronchi have a rich parasympathetic innervation but there is no sympathetic innervation of bronchial smooth muscle and all sympathetic effects are due to circulating adrenaline (epinephrine and noradrenaline (norepinephrine) acting on (32 adrenoceptors. Stimulation of these receptors mediates bronchodilatation by relaxation of bronchial smooth muscle. Beta-adrenoceptor agonists also have limited antiinflammatory actions. They inhibit mediator release from mast cells and may stimulate... [Pg.162]

Sites that bind adrenaline (epinephrine), noradrenaline (norepinephrine), and related catecholamines (see Chapter 30) to almost all cell surfaces are classified as either a adrenergic or (5 adrenergic receptors. The P receptors, which have been studied the most,150 occur as two major types. [Pg.553]

Every hormone must have one or more receptors, most of which are proteins. These may be found embedded in the outer surface of the plasma membrane, in the cytoplasm, or in the cell nucleus. Binding of a hormone to its receptor often elicits both a rapid response and a slower one. For example, we have seen that glucagon, adrenaline, and vasopressin bind to cell surface receptors and promote the synthesis of cyclic AMP (Fig. 11-4). Tire cAMP induces rapid chemical modifications of many proteins. Some of these may diffuse into the nucleus and affect transcription of genes, a slower response. Insulin (Chapter 11, Section G) also exerts both rapid and slower responses. [Pg.1741]


See other pages where Adrenaline cell receptors is mentioned: [Pg.271]    [Pg.401]    [Pg.15]    [Pg.15]    [Pg.271]    [Pg.760]    [Pg.42]    [Pg.43]    [Pg.46]    [Pg.538]    [Pg.1241]    [Pg.350]    [Pg.371]    [Pg.255]    [Pg.190]    [Pg.69]    [Pg.305]    [Pg.7]    [Pg.291]    [Pg.299]    [Pg.135]    [Pg.137]    [Pg.181]    [Pg.435]    [Pg.175]    [Pg.553]    [Pg.553]    [Pg.566]    [Pg.1741]    [Pg.1743]    [Pg.1791]    [Pg.574]    [Pg.8]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Adrenaline

Adrenalins

© 2024 chempedia.info