Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesion curing system

Tertiary aromatic amines hydroperoxides and sulfonimides are important components of many of the common anaerobic adhesive cure systems. While various formulative aspects of these compounds are well understood, a detailed explanation for their dramatic effect on the rate of polymerization of the adhesive has been lacking. Our approach to the problem has been to study the chemistry of the isolated components of this cure system under well defined conditions and to apply the results to understanding the mechanism by which these compounds accelerate the polymerization of anaerobic adhesives. Herein, we report some of the results of our studies of the reactions of N,N-dimethylaniline derivatives, which are typical amines used in anaerobic formulations, with cumene hydroperoxide (CHP). Connections will be made between the chemistry of the isolated systems and that which occurs in anaerobic formulations, both during storage and cure. [Pg.604]

The capital investment required for radiation-cured adhesive systems is 27% lower than for solvent-based adhesive curing systems. This does not include the additional cost of controlling air emissions with solvent-based systems. [Pg.19]

Adhesives. Because of exceUent adhesion to many substrates, epoxy resins are extensively used for high performance adhesives. These can be categorized into high temperature curing systems (soHds and Hquids) and room temperature curing systems (Hquids). [Pg.371]

The reluctance of acrylic monomers to polymerise in the presence of air has been made a virtue with the anaerobic acrylic adhesives. These are usually dimethacrylates such as tetramethylene glycol dimethacrylate. The monomers are supplied with a curing system comprising a peroxide and an amine as part of a one-part pack. When the adhesive is placed between mild steel surfaces air is excluded, which prevents air inhibition, and the iron present acts as a polymerisation promoter. The effectiveness as a promoter varies from one metal to another and it may be necessary to use a primer such as cobalt naphthenate. The anaerobic adhesives have been widely used for sealing nuts and bolts and for a variety of engineering purposes. Small tube containers are also available for domestic use. [Pg.420]

Whilst the properties of the cross-linked resins depend very greatly on the curing system used and on the type of resin, the most characteristic properties of commercial materials are their toughness, low shrinkage on cure, high adhesion to many substrates, good alkali resistance and versatility in formulation. [Pg.745]

Silicone adhesives are generally applied in a liquid and uncured state. It is therefore the physical and chemical properties of the polymers, or more precisely of the polymer formulation, that guide the various processes leading to the formation of the cured silicone network. The choice of the cure system can be guided by a variety of parameters that includes cure time and temperature, rheological properties in relation with the application process, substrates, the environment the adhesive joints will be subjected to and its subsequent durability, and of course, cost. [Pg.681]

Scheme 5. Common moisture RTV condensation cure systems for silicone adhesives and sealants. R is typically methyl (CH3-) or ethyl (CH3CH2-) group. Scheme 5. Common moisture RTV condensation cure systems for silicone adhesives and sealants. R is typically methyl (CH3-) or ethyl (CH3CH2-) group.
There are many applications for silicone adhesives, sealants, or coatings where the condensation curing systems are not suitable. This is because they are relatively slow to cure, they require moisture to cure that can itself be in some cases uncontrollable, and they evolve by-products that cause shrinkage. Adhesives needed in automotive, electronics, microelectronics, micro electromechanical systems, avionic, and other hi-tech applications are usually confined to vei7 small volumes, which can make access to moisture difficult. Also, their proximity to very sensitive mechanical or electronic components requires a system that does not evolve reactive chemicals. [Pg.685]

The chemical bonding theory of adhesion applied to silicones involves the formation of covalent bonds across an interface. This mechanism strongly depends on both the reactivity of the selected silicone cure system and the presence of reactive groups on the surface of the substrate. Some of the reactive groups that can be present in a silicone system have been discussed in Section 3.1. The silicone adhesive can be formulated so that there is an excess of these reactive groups, which can react with the substrate to form covalent bonds. It is also possible to enhance chemical bonding through the use of adhesion promoters or chemical modification of the substrate surface. [Pg.696]

A WBL can also be formed within the silicone phase but near the surface and caused by insufficiently crosslinked adhesive. This may result from an interference of the cure chemistry by species on the surface of substrate. An example where incompatibility between the substrate and the cure system can exist is the moisture cure condensation system. Acetic acid is released during the cure, and for substrates like concrete, the acid may form water-soluble salts at the interface. These salts create a weak boundary layer that will induce failure on exposure to rain. The CDT of polyolefins illustrates the direct effect of surface pretreatment and subsequent formation of a WBL by degradation of the polymer surface [72,73]. [Pg.698]

Typical components of a silicone adhesive based on hydrosilylation addition cure system... [Pg.703]

The selection of the cure system in these applications is directed by constraints such as location of the adhesive in terms of confined space, speed and depth of cure, etc. The volumes of silicones typically applied are relatively small. In general, the uncured adhesive needs to be dispensed in a well-defined and limited area, and needs to stay in place without flowing during cure. No by-products of the cure reaction are acceptable as they may contaminate other sensitive areas of the devices. These constraints often direct the choice to the platinum-catalyzed hydrosilylation cure system that is relatively expensive. [Pg.703]

The blocked isocyanate systems (with curative present) are latent cure systems. In order to create a latent curing adhesive, the blocked isocyanate is added to a catalyzed polyol component without a reaction occurring at room temperature. In theory, the blocked adhesive system is relatively stable at room temperature. When this system is heated to the unblocking temperature, the chemical reaction, which... [Pg.791]

An NR-rich undertread layer can enhance the adhesion between belt or cap-ply and tread whilst a thicker subtread compound may be included to offer some additional benefits of low hysteresis for car tires and low heat generation for truck tires within the bulk of a thick section. The cure system needs better flexibility and low heat generation. Typically the cure system will be based on CV/SEV. Tread base is generally having a composition as depicted in Table 14.40. [Pg.446]


See other pages where Adhesion curing system is mentioned: [Pg.999]    [Pg.529]    [Pg.999]    [Pg.529]    [Pg.235]    [Pg.82]    [Pg.456]    [Pg.456]    [Pg.84]    [Pg.355]    [Pg.495]    [Pg.370]    [Pg.68]    [Pg.410]    [Pg.516]    [Pg.547]    [Pg.658]    [Pg.682]    [Pg.684]    [Pg.685]    [Pg.687]    [Pg.689]    [Pg.690]    [Pg.690]    [Pg.691]    [Pg.699]    [Pg.702]    [Pg.703]    [Pg.770]    [Pg.771]    [Pg.821]    [Pg.892]    [Pg.928]    [Pg.932]    [Pg.1017]    [Pg.469]    [Pg.225]    [Pg.449]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Adhesive curing

Adhesive systems

Adhesives chemically curing systems

Cure systems

Cured adhesives

Cured systems

Curing systems

Dual-cure adhesive systems

© 2024 chempedia.info