Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition of chlorine

Addition of chlorine water to a bromide solution liberates bromine, which colours the solution brown. [Pg.349]

Because vicinal dihalides are prepared by addition of chlorine or bromine to alkenes (Section 6 14) alkenes especially terminal alkenes can serve as starting mate rials for the preparation of alkynes as shown m the following example... [Pg.373]

Chloroacetyl chloride is manufactured by reaction of chloroacetic acid with chlorinating agents such as phosphoms oxychloride, phosphoms trichloride, sulfuryl chloride, or phosgene (42—44). Various catalysts have been used to promote the reaction. Chloroacetyl chloride is also produced by chlorination of acetyl chloride (45—47), the oxidation of 1,1-dichloroethene (48,49), and the addition of chlorine to ketene (50,51). Dichloroacetyl and trichloroacetyl chloride are produced by oxidation of trichloroethylene or tetrachloroethylene, respectively. [Pg.89]

Mercurous fluoride [13967-25 ] Hg2p2, is less effective than Hgp2. The addition of chlorine or iodine to the reagent increases its reactivity owing to the formation of a complex between Hgp2 and HgX2 (4,12). [Pg.268]

Addition. The most important addition products of naphthalene are the hydrogenated compounds. Of less commercial significance are those made by the addition of chlorine. [Pg.483]

The process involving aHyl alcohol has not been iadustriaHy adopted because of the high production cost of this alcohol However, if the aHyl alcohol production cost can be markedly reduced, and also if the evaluated cost of hydrogen chloride, which is obtained as a by-product from the substitutive chlorination reaction, is cheap, then this process would have commercial potential. The high temperature propylene—chlorination process was started by SheH Chemical Corporation ia 1945 as an iadustrial process (1). The reaction conditions are a temperature of 500°C, residence time 2—3 s, pressure 1.5 MPa (218 psi), and an excess of propylene to chlorine. The yield of aHyl chloride is 75—80% and the main by-product is dichloropropane, which is obtained as a result of addition of chlorine. Other by-products iaclude monochioropropenes, dichloropropenes, 1,5-hexadiene. At low temperatures, the amount of... [Pg.76]

In reahty the chemistry of breakpoint chlorination is much more complex and has been modeled by computer (21). Conversion of NH/ to monochloramine is rapid and causes an essentially linear increase in CAC with chlorine dosage. Further addition of chlorine results in formation of unstable dichloramine which decomposes to N2 thereby causing a reduction in CAC (22). At breakpoint, the process is essentially complete, and further addition of chlorine causes an equivalent linear increase in free available chlorine. Small concentrations of combined chlorine remaining beyond breakpoint are due primarily to organic chloramines. Breakpoint occurs slightly above the theoretical C1 N ratio (1.75 vs 1.5) because of competitive oxidation of NH/ to nitrate ion. Organic matter consumes chlorine and its oxidation also increases the breakpoint chlorine demand. Cyanuric acid does not interfere with breakpoint chlorination (23). [Pg.298]

Addition of chlorine or bromine in the presence of water can yield compounds containing haUde and hydroxyl on adjacent carbon atoms (haloalcohols or halohydrins). The same products can be obtained in the presence of methanol (13) or acetic acid (14). As expected from the halonium ion intermediate, the addition is anti. As expected from Markovnikov s rule, the positive halogen goes to the same carbon that the hydrogen of a protic reagent would. [Pg.363]

Addition Chlorination. Chlorination of olefins such as ethylene, by the addition of chlorine, is a commercially important process and can be carried out either as a catalytic vapor- or Hquid-phase process (16). The reaction is influenced by light, the walls of the reactor vessel, and inhibitors such as oxygen, and proceeds by a radical-chain mechanism. Ionic addition mechanisms can be maximized and accelerated by the use of a Lewis acid such as ferric chloride, aluminum chloride, antimony pentachloride, or cupric chloride. A typical commercial process for the preparation of 1,2-dichloroethane is the chlorination of ethylene at 40—50°C in the presence of ferric chloride (17). The introduction of 5% air to the chlorine feed prevents unwanted substitution chlorination of the 1,2-dichloroethane to generate by-product l,l,2-trichloroethane. The addition of chlorine to tetrachloroethylene using photochemical conditions has been investigated (18). This chlorination, which is strongly inhibited by oxygen, probably proceeds by a radical-chain mechanism as shown in equations 9—13. [Pg.508]

Reaction Mechanism. High temperature vapor-phase chlorination of propylene [115-07-17 is a free-radical mechanism in which substitution of an allyhc hydrogen is favored over addition of chlorine to the double bond. Abstraction of allyhc hydrogen is especially favored since the allyl radical intermediate is stabilized by resonance between two symmetrical stmctures, both of which lead to allyl chloride. [Pg.33]

Chemistry and Environmental Impact. Lindane is produced by the photocataly2ed addition of chlorine to ben2ene to give a mixture of isomers. The active y-HCH isomer can be preferentially extracted and purified. Composition of the technical-grade product is a (65—70%), B (7—10%), y (14—15%), 5 (7%), and S (1—2%). Lindane has been produced worldwide for its use as an insecticide and for other minor uses in veterinary, agricultural, and medical products. [Pg.67]

Almost 40 years later the Lummus Co. patented an integrated process involving the addition of chlorine along with the sodium chloride and sodium hydroxide from the cathode side of an electrolytic cell to a tertiary alcohol such as tertiary butanol to produce the tertiary alkyl hypochlorite. The hypochlorite phase separates, and the aqueous brine solution is returned to the electrolytic cells. The alkyl hypochlorite reacts with an olefin in the presence of water to produce a chlorohydrin and the tertiary alcohol, which is returned to the chlorinator. With propylene, a selectivity to the chlorohydrin of better than 96% is reported (52). A series of other patents covering this technology appeared during the 1980s (53—56). [Pg.74]

Hypalon GP Grades. These represent a family of polymers closely related to CSM ia that addition of chlorine to precursors other than polyethylene add value as modifiers for adhesives, coatings, and inks because of iacreased solubiHty and compatibiHty. [Pg.495]

Several related derivatives have also been utilized in this type of synthesis. Imino-chloromethanesulfenyl chlorides (184), prepared by the controlled addition of chlorine to isothiocyanates, react with amidines (161) to give 1,2,4-thiadiazolines (185) (71T4117). Chlorocarbonylsulfenyl chloride (186), prepared by the hydrolysis of trichloromethanesulfenyl chloride with sulfuric acid, reacted with ureas, thioureas and guanidines to give 1,2,4-thiadiazolidine derivatives (187) <70AG(E)54, 73CB3391). [Pg.130]

B. 3-Chlorothietane 1,1-dioxide. Thietane 1,1-dioxide (14.0 g, 0.132 mol) is placed in a three-necked, 500-mL, round-bottomed flask fitted with a magnetic stirrer, reflux condenser and a chlorine bubbler, caution sinae ahtovine is poisonous, the reaation involving it should be done in a good hood.) Carbon tetrachloride (300 mL) is added to the flask (Note 4) and the suspension is irradiated by a 250-watt sunlamp positioned as close as possible to the reaction flask without touching it (Note 5) while chlorine is bubbled through the solution for 15 min at a moderate rate (Note 6). A copious white precipitate forms and irradiation and addition of chlorine must be stopped at... [Pg.211]

The properties of chlorine azide resemble those of bromine azide. Pon-sold has taken advantage of the stronger carbon-chlorine bond, i.e., the resistance to elimination, in the chloro azide adducts and thus synthesized several steroidal aziridines. 5a-Chloro-6 -azidocholestan-3 -ol (101) can be converted into 5, 6 -iminocholestan-3l -ol (102) in almost quantitative yield with lithium aluminum hydride. It is noteworthy that this aziridine cannot be synthesized by the more general mesyloxyazide route. Addition of chlorine azide to testosterone followed by acetylation gives both a cis- and a trans-2iddMct from which 4/S-chloro-17/S-hydroxy-5a-azidoandrostan-3-one acetate (104) is obtained by fractional crystallization. In this case, sodium borohydride is used for the stereoselective reduction of the 3-ketone... [Pg.25]

Although 16-methylene-17a-hydroxy-20-ketopregnanes can be brominated at C-21 in excellent yield in chloroform containing a small amount of methanol,with A -17a-hydroxy-20-ketopregnanes the use of ethanol alone (containing hydrogen chloride) is far superior. Isolated double bonds (e.g., A, A ) may also be protected prior to bromination by the addition of chlorine. [Pg.220]

Additions of chlorine or bromine to 2-(4-biphenylyl)pentafIuoropropene take place only under free-radical conditions [5. 6 (Table 1)... [Pg.364]

Another common reaction is the chlorination of alkenes to give 1,2-dihaloalka-nes. Patell et al. reported that the addition of chlorine to ethene in acidic chloroalu-minate(III) ionic liquids gave 1,2-dichloroethane [68]. Under these conditions, the imidazole ring of imidazolium ionic liquid is chlorinated. Initially, the chlorination occurs at the 4- and 5-positions of the imidazole ring, and is followed by much slower chlorination at the 2-position. This does not affect the outcome of the alkene chlorination reaction and it was found that the chlorinated imidazolium ionic liquids are excellent catalysts for the reaction (Scheme 5.1-39). [Pg.193]

The direct addition of chlorine to ethylene produces ethylene dichloride (1,2-dichloroethane). Ethylene dichloride is the main precursor for vinyl chloride, which is an important monomer for polyvinyl chloride plastics and resins. [Pg.201]


See other pages where Addition of chlorine is mentioned: [Pg.186]    [Pg.67]    [Pg.259]    [Pg.105]    [Pg.477]    [Pg.72]    [Pg.77]    [Pg.280]    [Pg.505]    [Pg.72]    [Pg.490]    [Pg.147]    [Pg.10]    [Pg.503]    [Pg.34]    [Pg.35]    [Pg.452]    [Pg.452]    [Pg.740]    [Pg.259]    [Pg.794]    [Pg.96]    [Pg.33]    [Pg.868]    [Pg.279]    [Pg.332]    [Pg.527]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Addition of chlorine atoms to double and triple bonds

Chlorine addition

Cyclooctene addition of chlorine

Electrophilic addition of bromine and chlorine to alkenes

© 2024 chempedia.info