Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adding a Feed Stream

Added a feed distributor (omitted originally) to allow the proper lower feed point to be used for one feed stream. [Pg.309]

If one or more unit operations have been given infeasible specifications, then the flowsheet will never converge. This problem also occurs with multicomponent distillation columns, particularly when purity specifications or flow rate specifications are used, or when nonadjacent key components are chosen. A quick manual mass balance around the column can usually determine whether the specifications are feasible. Remember that all the components in the feed must exit the column somewhere. The use of recovery specifications is usually more robust, but care is still needed to make sure that the reflux ratio and number of trays are greater than the minimum required. A similar problem is encountered in recycle loops if a component accumulates because of the separation specifications that have been set. Adding a purge stream usually solves this problem. [Pg.214]

The distillation column used in this study is designed to separate a binary mixture of methanol and water, which enters as a feed stream with flow rate F oi and composition Xp between the rectifying and the stripping section, obtaining both a distillate product stream D oi with composition Ad and a bottom product stream 5vo/ with composition Ab. The column consists of 40 bubble cap trays. The overhead vapor is totally condensed in a water cooled condenser (tray 41) which is open at atmospheric pressure. The process inputs that are available for control purposes are the heat input to the boiler Q and the reflux flow rate L oi. Liquid heights in the column bottom and the receiver drum (tray 1) dynamics are not considered for control since flow dynamics are significantly faster than composition dynamics and pressure control is not necessary since the condenser is opened to atmospheric pressure. [Pg.466]

The main variables associated with phase relationships include the overall composition, Z , temperature, pressure, liquid composition, X , vapor composition, F, vapor mole fraction, /, and heat transferred, Q. A process in which Z, and two other independent variables are set, and equilibrium separation of the phases is allowed to take place, is called a flash operation. A general flash operation is shown in Figure 2.4. A feed stream initially at conditions T, and P, is controlled so that its final conditions satisfy two specifications. The feed is of fixed rate and composition, F and Z . A heat duty, Q, may be added to or removed from the system as required. The feed is flashed to generate a vapor product with flow rate Ft r and a liquid product with flow rate F(1 -1 /), where / is the vapor mole fraction at flash conditions and P. In general, tj/ may be equal to zero or one or any value in between. The enthalpies of the vapor and liquid products are H2 and /Z2> respectively. The type of flash operation... [Pg.80]

Isobutane and 1-butene are close boilers and, although they do not form an azeotrope, are difficult to separate by conventional distillation. Using a single stage, a feed stream containing 40% mole isobutane and 60% mole 1-butene is flashed at 520 kPa so that 50% of this stream is vaporized. With no solvent added, the vapor and liquid product compositions are about the same. The ratio of 1-butene to isobutane in the liquid product is about 1.6 (Figure 2.10)... [Pg.90]

Commercial process streams can rarely be accurately replicated in a laboratory setting. Minor and trace compounds are frequently unknown. Lubricants and corrosion inhibitors added to the process seldom appear in a feed stream composition analysis, but indeed they can make their presence known after a membrane is put into service. Other compounds may arise intermittently or occur... [Pg.130]

The scheme shown in Fig. 11.14 has an analyzer on the feed stream but none on either product. As the principal failing of feedforward control systems is insufficient accuracy, a feedback loop on product quality is usually of considerable worth. In fact, if feedback is available, the exactness of the feedforward model can often be relaxed, even to the extent of omitting a feed-stream analyzer. Figure 11.15 shows how feedback control of product composition might be added to the forward loops. [Pg.308]

Propionic acid is accessible through the Hquid-phase carbonylation of ethylene over a nickel carbonyl catalyst (104), or via ethylene and formic acid over an iridium catalyst (105). Condensation of propionic acid with formaldehyde over a supported cesium catalyst gives MAA directiy with conversions of 30—40% and selectivities of 80—90% (106,107). Catalyst lifetime can be extended by adding low levels (several ppm) of cesium to the feed stream (108). [Pg.253]

The per pass ethylene conversion in the primary reactors is maintained at 20—30% in order to ensure catalyst selectivities of 70—80%. Vapor-phase oxidation inhibitors such as ethylene dichloride or vinyl chloride or other halogenated compounds are added to the inlet of the reactors in ppm concentrations to retard carbon dioxide formation (107,120,121). The process stream exiting the reactor may contain 1—3 mol % ethylene oxide. This hot effluent gas is then cooled ia a shell-and-tube heat exchanger to around 35—40°C by usiag the cold recycle reactor feed stream gas from the primary absorber. The cooled cmde product gas is then compressed ia a centrifugal blower before entering the primary absorber. [Pg.457]


See other pages where Adding a Feed Stream is mentioned: [Pg.57]    [Pg.64]    [Pg.78]    [Pg.91]    [Pg.100]    [Pg.116]    [Pg.125]    [Pg.57]    [Pg.64]    [Pg.78]    [Pg.91]    [Pg.100]    [Pg.116]    [Pg.125]    [Pg.390]    [Pg.308]    [Pg.248]    [Pg.208]    [Pg.27]    [Pg.23]    [Pg.121]    [Pg.270]    [Pg.280]    [Pg.45]    [Pg.300]    [Pg.86]    [Pg.552]    [Pg.241]    [Pg.34]    [Pg.373]    [Pg.215]    [Pg.333]    [Pg.160]    [Pg.194]    [Pg.1310]    [Pg.1448]    [Pg.1813]   


SEARCH



Feed Stream

© 2024 chempedia.info