Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acylsilanes reactions

Indium-mediated allylation of trialkyl(difluoroacetyl)silane 70 in aqueous media gives homoallylic alcohol 71 exclusively (Scheme 60). Both water and THF are essential for the allylation reaction. It is worth noting that homoallylic alcohol 71 is formed exclusively under these reaction conditions. On the contrary, enol silyl ether 72 is a major product of the fluorinated acylsilanes reaction with other organometallic compounds than indium via a Brook rearrangement and defluorination. Indium-mediated allylsilylation of carbonyl compounds provides a facile route to 2-(hydroxyethyl)allylsilanes. The allene homologs are similarly prepared (Scheme 61).244,244a... [Pg.686]

Substituted aroyl- and heteroaroyltrimethylsilanes (acylsilanes) are prepared by the coupling of an aroyl chloride with (Me3Si)2 without decarbonylation, and this chemistry is treated in Section 1.2[629], Under certain conditions, aroyl chlorides react with disilanes after decarbonylation. Thus the reaction of aroyl chlorides with disilane via decarbonylation is a good preparative method for aromatic silicon compounds. As an interesting application, trimel-litic anhydride chloride (764) reacts with dichlorotetramethyidisilane to afford 4-chlorodimethylsilylphthalic anhydride (765), which is converted into 766 and used for polymerization[630]. When the reaction is carried out in a non-polar solvent, biphthalic anhydride (767) is formed[631]. Benzylchlorodimethylsilane (768) is obtained by the coupling of benzyl chloride with dichlorotetramethyl-disilane[632,633]. [Pg.241]

Portella reported the Paal-Knorr condensation of l,4-bis(acylsilanes) 38 in the presenc( of p-toluenesulfonic acid to yield a variety of 2,5-disilylfurans 1)9. Presumably due to steri( constraints, bis(acylsilanes) substituted in the 2-position failed to undergo the Paal-Knor reaction to provide any of the expected trisubstituted furan products. [Pg.172]

The reactions of a-methyl-branched acylsilanes with 2-propenylmagnesium bromide exhibit surprisingly high diastereoselectivilies, although further improvement is accomplished by application of allyltrimethylsilane/ titanium(IV) chloride (> 100 I)27. The fluoride-induced desilylation proceeds with retention of configuration. [Pg.255]

BF,.OF.t2-induced reaction of acylsilane silyl enol ethers with acetals... [Pg.65]

Scheme 4.22 Coupling reaction using aldehyde, acylsilane and oxo-acid. Scheme 4.22 Coupling reaction using aldehyde, acylsilane and oxo-acid.
If cinnamic acid imidazolide is introduced into this reaction, the double bond of the corresponding acylsilane is reduced as well.[105]... [Pg.322]

The novel [6+2] annulation approach developed by the Takeda group has also been included in a threefold anionic/pericyclic process (Scheme 2.149) [340]. The reaction leads to functionalized eight-membered rings 2-659 in a highly stereoselective manner, starting from acylsilanes 2-656 and 3-(trimethylsilyl)vinyl-lithium (2-657). After 1,2-addition and 1,2-Brook rearrangement, the cyclobutane 2-... [Pg.148]

Allylation of aldehydes or ketones using allylsilanes, known as the Hosomi-Sakurai reaction, is a useful method for obtaining homoallylic alcohols. TiIV compounds have been successfully applied to this reaction (Scheme 21) 80 Besides aldehydes and ketones, acylsilanes, 0,0-acetals, and A-,(7-acetals can be employed.81-83 1,4-Addition of an allyl group to an a,/ -unsaturated ketone has been also reported.84... [Pg.407]

A different approach toward highly substituted pyrroles involving a one-pot sila-Stetter/Paal-Knorr strategy was realized by Bharadwaj and Scheidt (Scheme 6.182) [343]. In this multicomponent synthesis, catalyzed by a thiazolium salt, an acyl anion conjugate addition reaction of an acylsilane (sila-Stetter) was coupled in situ with the conventional Paal-Knorr approach. Employing microwave conditions at 160 °C for 15 min, the acylsilane was combined with the cx/l-unsaturated ketone in... [Pg.224]

Aryl(trimethylsiloxy)carbenes. Acylsilanes (153) undergo a photoinduced C —> O silyl shift leading to aryl(trimethylsiloxy)carbenes (154).73,74 The carbenes 154 can be captured by alcohols to form acetals (157) 73 or by pyridine to give transient ylides (Scheme 29).75 LFP of 153 in TFE produced transient absorptions of the carbocations 155 which were characterized by their reactions with nucleophiles.76 The cations 155 are more reactive than ArPhCH+, but only by factors < 10. Comparison of 154 and 155 with Ar(RO)C and Ar(RO)CH+, respectively, would be of interest. Although LFP was applied to generate methoxy(phenyl)carbene and to monitor its reaction with alcohols,77 no attempt was made to detect the analogous carbocation. [Pg.21]

Acylsilanes are a class of compounds in which a silyl group is directly bound to the carbonyl carbon, and they have received considerable research interest from the point of view of both physical organic and synthetic organic chemistry [15]. Acylsilanes have a structure quite similar to the structure of a-silyl-substituted ethers a silyl group is attached to the carbon adjacent to the oxygen atom, although the nature of the C-O bond is different. Therefore, one can expect /1-silicon effects in the electron-transfer reactions of acylsilanes. [Pg.58]

Suda and coworkers described the anodic oxidation of 2-silyl-l,3-dithianes which have two sulfur atoms on the carbon adjacent to silicon [42], In this case, however, the C Si bond is not cleaved, but the C-S bonds are cleaved to give the corresponding acylsilanes (Scheme 12). Although the detailed mechanism has not been clarified as yet, the difference in the anode material seems to be responsible for the different pathway of the reaction. In fact, a platinum plate anode is used in this reaction, although a carbon anode is usually used for the oxidative cleavage of the C-Si bond. In the anodic oxidation of 2-silyl-l,3-dithianes the use of a carbon anode results in a significant decrease in the yield of acylsilanes. The effects of the nature of the solvent and the supporting electrolyte may also be important for the fate of the initially formed cation radical intermediate. Since various 2-alkyl-2-silyl-l,3-dithianes can be readily synthesized, this reaction provides a convenient route to acylsilanes. [Pg.67]

The addition of carbonyl compounds towards lithiated 1-siloxy-substituted allenes does not proceed in the manner described above for alkoxyallenes. Tius and co-work-ers found that treatment of 1-siloxy-substituted allene 67 with tert-butyllithium and subsequent addition of aldehydes or ketones led to the formation of ,/i-unsaturated acyl silanes 70 (Scheme 8.19) [66]. This simple and convenient method starts with the usual lithiation of allene 67 at C-l but is followed by a migration of the silyl group from oxygen to C-l, thus forming the lithium enolate 69, which finally adds to the carbonyl species. Transmetalation of the lithiated intermediate 69 to the corresponding zinc enolate provided better access to acylsilanes derived from enolizable aldehydes. For reactions of 69 with ketones, transmetalation to a magnesium species seems to afford optimal results. [Pg.436]

Scheme 9.15 Proposed pathway for the reaction of allenylsilanes with conjugated acylsilanes leading to acylcyclopentenes and cyclohexenones. Scheme 9.15 Proposed pathway for the reaction of allenylsilanes with conjugated acylsilanes leading to acylcyclopentenes and cyclohexenones.
The reaction of acylsilanes with acid chlorides in the presence of A1C13 leads to furans (Table 9.41) [45]. In these reactions an acyl cation initiates the addition with ensuing silyl migration yielding an intermediate vinyl cation. Attack of the carbonyl oxygen followed by proton loss affords the observed products (Scheme 9.16). An analogous reaction with nitrosyl fluoroborate provides a route to oxazoles (Table 9.42) [65]. The nitrosyl cation serves as the electrophile in this application. [Pg.541]

The reaction of allenylsilanes with a,/8-unsaturated acylsilanes presents a new [3 + 3]-cycloaddition approach to a six-membered carbocycle [189]. Lewis acid-promoted ring expansion of the [3 + 2]-annulation product 260 is followed by a second cationic 1,2-silyl migration to produce the cyclohexenone 261 after desilylation. [Pg.805]

Murai and coworkers reported on operationally simple aldol reactions with lithium enolates generated from carbonylation of silylmethyl lithium species [57]. Upon 1,2-silicon shift, a-silyl acyllithium species can be stereo-selectively converted to (E) lithium enolates that undergo addition to aldehydes to give /3-hydroxy acylsilanes (Scheme 14). [Pg.223]

Allenyl silyl ethers 40 have also been prepared by the reaction of 2-lithiofurans 38 with acylsilanes 39 via the Brook isomerization (equation 15) . [Pg.465]

Even the starting acylsilane 39 can be easily prepared via a Brook isomerization by the reaction of silylmethyllithium 41 with carbon monoxide " °. Initially, the reaction gives the corresponding unstable acyllithium 42 which underwent the Brook isomerization affording the stable lithium enolate (equation 16). [Pg.465]

Desilylation of acylsilanes. Two groups have reported that KF in combination with l8-crown-6, DMSO, or HMPT2 converts acylsilanes into acyl anion equivalents. The reaction can be used to obtain aldehydes, ketones, and hydroxy ketones in moderate to good yield. [Pg.325]


See other pages where Acylsilanes reactions is mentioned: [Pg.51]    [Pg.52]    [Pg.254]    [Pg.319]    [Pg.78]    [Pg.78]    [Pg.81]    [Pg.82]    [Pg.93]    [Pg.108]    [Pg.117]    [Pg.117]    [Pg.119]    [Pg.259]    [Pg.167]    [Pg.50]    [Pg.91]    [Pg.107]    [Pg.91]    [Pg.107]    [Pg.146]    [Pg.39]    [Pg.19]    [Pg.230]   
See also in sourсe #XX -- [ Pg.898 , Pg.899 ]




SEARCH



Acylsilanes

Acylsilanes, Stetter reaction

© 2024 chempedia.info