Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active methylene compounds reaction

Entry X Ligand Activated methylene compounds Reaction conditions Ref. [Pg.226]

Knoevenagel reaction. The condensation of an aldehyde with an active methylene compound (usually malonic acid or its derivatives) in the presence of a base is generally called the Knoevenagel reaction. Knoevenagel found that condensations between aldehydes and malonic acid are effectively catalysed by ammonia and by primary and secondary amines in alcoholic solution of the organic amines piperidine was regarded as the best catalyst. [Pg.710]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

Alkyl- and arylmercury(II) halides are used for the ketone formation[402]. When active methylene compounds. such as /f-keto esters or malonates are used instead of alcohols, acylated / -keto esters and malonates 546 are produced, For this reaction, dppf is a good ligand[403]. The intramolecular version of the reaction proceeds by trapping the acylpalladium intermediate with eno-late to give five- and six-membered rings smoothly. Formation of 547 by intramolecular trapping with malonate is an example[404]. [Pg.203]

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

When active methylene compounds are used as nucleophiles in carbonyla-tion at 50 °C and I atm, ketones are obtained. As an example, the reaction of l,3-cyclohexanedione affords the trione 32(17],... [Pg.458]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

With active methylene compounds, the carbanion substitutes for the hydroxyl group of aHyl alcohol (17,20). Reaction of aHyl alcohol with acetylacetone at 85°C for 3 h yields 70% monoaHyl compound and 26% diaHyl compound. Malonic acid ester in which the hydrogen atom of its active methylene is substituted by A/-acetyl, undergoes the same substitution reaction with aHyl alcohol and subsequendy yields a-amino acid by decarboxylation (21). [Pg.73]

Quinone monoacetals such as 2-methoxyben2oquinonemonoacetal [64701-03-7] (66) show regiospeciftc addition of active methylene compounds (66), yielding 83% (67) and 63% (68) on reactions with ethyl malonate. [Pg.412]

Organosodium compounds are prepared from sodium and other organometaUic compounds or active methylene compounds by reaction with organic haUdes, cleavage of ethers, or addition to unsaturated compounds. Some aromatic vinyl compounds and aHyUc compounds also give sodium derivatives. [Pg.164]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

The organic chemistry of sulfuryl chloride involves its use in chlorination and sulfonation (172,175,196,197). As a chlorinating agent, sulfuryl chloride is often mote selective than elemental chlorine. The use of sulfuryl chloride as a chlorinating agent often allows mote convenient handling and measurement as well as better temperature control because of the lower heat of reaction as compared with chlorine. Sulfuryl chloride sometimes affords better selectivity than chlorine in chlorination of active methylene compounds (198—200) ... [Pg.143]

MSC undergoes reactions with alcohols, amines, active methylene compounds (in the presence of bases), and aromatic hydrocarbons (in the presence of Friedel-Crafts catalysts) to replace, generally, a hydrogen atom by a methanesulfonyl group (382—401). [Pg.153]

The widespread use of cinnamic derivatives has led to the pursuit of reUable methods for thek dkect synthesis. Commercial processes have focused on condensation reactions between ben2aldehyde and a number of active methylene compounds for assembly of the requisite carbon skeleton. The presence of a disubstituted carbon—carbon double bond in the sidechain of these chemicals also gives rise to the existence of two distinct stereoisomers, the cis or (Z)- and trans or (E)- isomers ... [Pg.173]

Rates of debromination of bromonitro-thiophenes and -selenophenes with sodium thio-phenoxide and sodium selenophenoxide have been studied. Selenophene compounds were about four times more reactive than the corresponding thiophene derivatives. The rate ratio was not significantly different whether attack was occurring at the a- or /3-position. As in benzenoid chemistry, numerous nucleophilic displacement reactions are found to be copper catalyzed. Illustrative of these reactions is the displacement of bromide from 3-bromothiophene-2-carboxylic acid and 3-bromothiophene-4-carboxylic acid by active methylene compounds (e.g. AcCH2C02Et) in the presence of copper and sodium ethoxide (Scheme 77) (75JCS(P1)1390). [Pg.78]

Active methylene compounds can add to 1,3-dithiolylium ions to give 2-substituted 1,2-dihydro-1,3-dithioles (206). Again, addition is often followed by oxidation (to 207). Alternatively, further addition can occur (to 208) (80AHC(27)151). In this reaction, (205) can be CH2(CN)2, CH2(COMe)2 or even MeCOMe. Somewhat similar reactions are shown by 1,3-diarylimidazolium ions. [Pg.67]

Another well-established process to generate fluoro ketones proceeds via acylation ofenolates [68, 69] or activated methylene compounds [70 71] as well as by Claisen type condensation reactions [72] Because of the electrophilic power of the acylating agents, there is usually no need tor a catalyst [68]... [Pg.535]

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

Standard condensation reactions of formylfurazans with a variety of active methylene compounds have been performed to give reactive ylidene derivatives (99MI7) (Scheme 67). Yields ranging from 8% to 95% have been obtained. [Pg.101]

Other examples of CN/CC replacement are observed in reactions of l-phenyl-pyrimidin-2(l//)-one with active methylene compounds, such as diethyl malonate and benzoylacetate, giving in good yield 2-oxo-l,2-dihydro-3-pyridinecarboxylate and 3-benzoylpyridin-2(l H)-one, respectively (84CPB2942, 87H2223) (Scheme 8). In a similar way 4,6-dimethyl-1-phenylpyrimidin-2( 1 //)-one, 4,6-dimethyl-1 -phenylpyrimidine-2( 1 //)-thione and 4,6-dimethyl-1 -phenyl-2-phenylimino-1,2-dihydropyrimidine yield with malonitrile 2-amino-4,6-dimethyl-3-pyridinecarbonitrile. In a similar way 2,3-diarylpyrimidin-4(3//)-thiones give with malonitrile CN/CC replacement (84H763) (Scheme 8). The reaction takes a similar course as described in Scheme 7. [Pg.37]

CN/CC replacements were also observed when the pyrimidine ring is part of a bicyclic system. Reaction of quinazoline with active methylene compounds, containing the cyano group (malonitrile, ethyl cyanoacetate, phenylacetonitrile) gave 2-amino-3-R-quinoline (R = CN, C02Et, Ph) (72CPB1544) (Scheme 12). The reaction has to be carried out in the absence of a base. When base is used, no ring transformation was observed only dimer formation and SnH substitution at C-4 was found. [Pg.40]

A more detailed study of the reaction with malonitrile revealed that the yields are dependent of the molar ratio malonitrile/quinazoline. The yield increases from 29 (ratio 1.0) to 81% (ratio 2.0), suggesting that the mechanism of the ring transformation involves the contribution of 2 mol of malonitrile. Reaction of quinazoline 3-oxide with the above-mentioned active methylene compounds gives about the same results, although the yields are poor (Scheme 12) (73CPB1943, 75CPB746). [Pg.40]

The reaction of A-acyliminium ions with nucleophilic carbon atoms (also called cationic x-amidoalkylation) is a highly useful method for the synthesis of both nitrogen heterocycles and open-chain nitrogen compounds. A variety of carbon nucleophiles can be used, such as aromatic compounds, alkcncs, alkyncs, carbcnoids, and carbanions derived from active methylene compounds and organometallics. [Pg.803]

C-coupling is of outstanding importance in the azo coupling reaction for the synthesis of azo dyes and pigments. An aromatic or heteroaromatic diazonium ion reacts with the so-called coupling component, which can be an aromatic primary, secondary, or tertiary amine, a phenol, an enol of an open-chain, aromatic, or heteroaromatic carbonyl compound, or an activated methylene compound. These reactions at an sp2-hybridized carbon atom will be discussed in Chapter 12. In the... [Pg.127]

A further example of an azo coupling reaction with an activated methylene compound (12.91), followed by ring closure to give a pyridazine derivative (12.92) in good yield (66%) was decribed by Gewald and Hain (1984). The reductive treatments of 12.92 give the pyrrole compounds 12.93 and 12.94 in 70% yield (Scheme 12-45). [Pg.338]

Active methylene compounds may be sulfinylated by reaction of their enolate anions with sulfinate ester7-1 This reaction has been investigated much in recent years and the compounds resulting from it have been of considerable use in asymmetric synthesis (see the chapter by Posner). Examples of the sulfinylation are given in the following paragraphs. [Pg.67]

This synthesis of N-nitromorpholine is representative of a rather general reaction for the preparation of both primary and secondary nitramines.3 It represents the simplest process for obtaining both types of compounds. The reaction is unique in that a nitration is carried out under neutral or alkaline conditions. Acetone cyanohydrin nitrate may also be used for the nitration of many active methylene compounds.8... [Pg.86]


See other pages where Active methylene compounds reaction is mentioned: [Pg.262]    [Pg.470]    [Pg.227]    [Pg.313]    [Pg.151]    [Pg.270]    [Pg.863]    [Pg.167]    [Pg.5]    [Pg.71]    [Pg.305]   
See also in sourсe #XX -- [ Pg.1358 ]




SEARCH



1- Phenyl-pyrimidin-2 -one, reaction with active methylene compounds

1.3.5- Triazines reaction with active methylene compounds

3-Bromothiophene-2-carboxylic acid, copper-catalyzed reactions with active methylene compounds

A-Thioiminium salts reactions with active methylene compounds

Activated methylene

Activated methylene compounds

Active methylene compounds reaction with diazonium

Aldehydes reaction with active methylene compounds

Benzyl Bromide reactions with active methylene compounds

Diazonium salts reaction with active methylene compounds

Halides, aryl reaction with active methylene compounds

Heterocyclic methylene-active carbonyl compounds, reaction

Ketones reaction with active methylene compounds

Knoevenagel reaction active methylene compound

Methylenation reaction

Methylene compounds

Methylene reactions

Methylenes, activated methylene

Nitroso compounds reaction with active methylene groups

Phase-Transfer Reaction of Active Methylene or Methine Compounds with Inorganic Base

Quinazoline 3-oxide, reaction with active methylene compounds

Reaction of Active Methylene Compounds

Tosyl azide reaction with active methylene compounds

© 2024 chempedia.info