Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actinides ionic radii

An empirical set of effective ionic radii in oxides and fluorides, taking into account the electronic spin state and coordination of both the cation and anion, have been calculated (114). For six-coordinate Bk(III), the radii values are 0.096 nm, based on a six-coordinate oxide ion radius of 0.140 nm, and 0.110 nm, based on a six-coordinate fluoride ion radius of 0.119 nm. For eight-coordinate Bk(IV), the corresponding values are 0.093 and 0.107 nm, based on the same anion radii (114). Other self-consistent sets of trivalent and tetravalent lanthanide and actinide ionic radii, based on isomorphous series of oxides (145, 157) and fluorides (148, 157), have been published. Based on a crystal radius for Cf(III), the ionic radius of isoelectronic Bk(II) was calculated to be 0.114 nm (158). It is important to note, however, that meaningful comparisons of ionic radii can be made only if the values compared are calculated in like fashion from the same type of compound, both with respect to composition and crystal structure. [Pg.47]

Although PUCI4 has been well characterized in the gas phase (51) in the temperature range 670-1025 K, all attempts to obtain tTiTs compound in the solid state have failed. Use of a plot of the difference AHf(MCl4,c) - AHf(M , aq) (, 8) as a function of the actinide ionic radii ( ) (as done above for PuFa) in the case of thorium, protactinium, uranium and neptunium yields a first path leading to aH (PuC14,c). A second path involves the extrapolation to the plutonium system of the difference AH5o n( C 4 ) ... [Pg.82]

Table 2 1-260 Actinides. Ionic radii (determined from crystal structures)... Table 2 1-260 Actinides. Ionic radii (determined from crystal structures)...
From Cantrell (1988), estimated from correlations of lanthanide ionic radii (Shannon, 1976) versus lanthanide carbonate complexation constants, plus the actinide ionic radius estimates of Shannon (1976). [Pg.987]

A full discussion of thorium electrochemistry is available (3). Thorium is generally more acidic than the lanthanides but less acidic than other light actinides, such as U, Np, and Pu, as expected from the larger Th" " ionic radius (108 pm). [Pg.35]

By contrast, the ionic radius in a given oxidation state falls steadily and, though the available data are less extensive, it is clear that an actinide contraction exists, especially for the -f3 state, which is closely similar to the lanthanide contraction (see p. 1232). [Pg.1264]

The overall distribution of lanthanides in bone may be influenced by the reactions between trivalent cations and bone surfaces. Bone surfaces accumulate many poorly utilized or excreted cations present in the circulation. The mechanisms of accumulation in bone may include reactions with bone mineral such as adsorption, ion exchange, and ionic bond formation (Neuman and Neuman, 1958) as well as the formation of complexes with proteins or other organic bone constituents (Taylor, 1972). The uptake of lanthanides and actinides by bone mineral appears to be independent of the ionic radius. Taylor et al. (1971) have shown that the in vitro uptakes on powdered bone ash of 241Am(III) (ionic radius 0.98 A) and of 239Pu(IV) (ionic radius 0.90 A) were 0.97 0.016 and 0.98 0.007, respectively. In vitro experiments by Foreman (1962) suggested that Pu(IV) accumulated on powdered bone or bone ash by adsorption, a relatively nonspecific reaction. On the other hand, reactions with organic bone constituents appear to depend on ionic radius. The complexes of the smaller Pu(IV) ion and any of the organic bone constituents tested thus far were more stable (as determined by gel filtration) than the complexes with Am(III) or Cm(III) (Taylor, 1972). [Pg.41]

The ionic radii of the commonest oxidation states are presented in Table 2. There is evidence of an actinide contraction of ionic radii as the 5/ orbitals are filled and this echoes the well established lanthanide contraction of ionic radii as the 4/orbitals are filled. Actinides and lanthanides in the same oxidation state have similar ionic radii and these similarities in radii are obviously paralleled by similarities in chemical behaviour in those cases where the ionic radius is relevant, such as the thermodynamic properties observed for halide hydrolysis. [Pg.47]

Symbol Th atomic number 90 atomic weight 232.04 an actinide series radioactive element electron configuration XRn]6d27s2 valence state +4 atomic radius 1.80 A ionic radius, Th4+ 1.05 A for coordination number 8 standard electrode potential, E° for Th4+ -1- 4e Th is -1.899V all isotopes are radioactive the only naturally-occurring isotope, Th-232, ti/2 1.4xl0i° year twenty-six isotopes are known in the mass range 212-237. [Pg.927]

The obvious first step in checking for the consistency of the data is comparing equilibrium constants of cations with the same charge and similar ionic radius. Comparison of the formation constants of complexes and solids of tet-ravalent actinides (Th, U4+, Np4+, Pu4+), Zr4+, and Sn4+ reveals that the selected data are very similar, which is to be expected from a chemical point of view, and none of the formation constants appears to be improbable (for details see Hummel et al. 2002). Similar pictures of chemical consistency emerge from the triva-lent Np3+, Pu3+, Am, and Eu3+ complexes and solids, and from the hexavalent UOz"1", NpOl4, and PuO complexes and solids (Hummel et al. 2002). [Pg.565]

When Z is a simple aquacation, two types of complex are formed depending upon the ionic radius of Z. For alkali, alkaline earth and most transition metal cations the product contains Z"+ in quasi-octahedral coordination. Equilibrium constants for reaction (6) have been determined for Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni, Cu2+ and Zn2+.93 For the transition metals, log K lies between 3 and 9, and is sensitive both to Z and to the lacunary polyanion involved. Larger cations, Sr24, Ba2+, and tri- and tetra-valent lanthanides and actinides are also able to bind two lacunary ligands in a manner similar to that illustrated in Figure 18. Although the stepwise formation of 1 1 and 2 1 complexes of the... [Pg.1047]

For the trivalent lanthanides99-100 and actinides,99 as well as for yttrium and scandium,75 the equilibrium constant for the extraction reaction has been shown to vary inversely with the ionic radius of the metal ion. It has therefore been concluded that the extracted complexes are all of the M(HA2)3 type, involving predominantly ionic metal—ligand bonds.75 The similarity of the IR spectra of the scandium(III) and thorium(IV) complexes of D2EHPA to those of the alkali metals is also indicative of the importance of ionic bonding.102... [Pg.795]

The ionic radii for the commonest oxidation states (Table 20-1) are compared with those of the lanthanides in Fig. 20-1. There is clearly an actinide contraction, and the similarities in radii of both series correspond to similarities in their chemical behavior for properties that depend on the ionic radius, such as hydrolysis of halides. It is also generally the case that similar compounds in the same oxidation state have similar crystal structures that differ only metrically. [Pg.1133]

The consequent increase in the nuclear charge and reduction of the shielding of the 6d- and 7s-electrons lead to a contraction of the atomic radius, similar to that previously discussed for the ionic radius. In Am and Cm, the 5f-electrons are localized in the core, which causes an expansion of the atomic radius. The differences in localization of f-electrons between light and heavy actinides are also illustrated by their different superconductive and magnetic behavior. The Th, Pa, and Am metals are superconductors Tc of 1.37, 0.42, and 0.79 K, respectively), whereas the heavier actinide metals are not superconductors but have larger magnetic moments at low temperatures. [Pg.23]

Because of the larger ionic radius of the actinide metals versus the group 4 metals (Th + = 1.08 A vs. Zr + = 0.79 A), organoactinides make good test compounds for the relative noncoordination of ionic activator anions... [Pg.3209]

Filling of the inner 4f electron shell across the lanthanide series results in decreases of ionic radii by as much as 15% from lanthanum to lutetimn, referred to as the lanthanide contraction (28). While atomic radius contraction is not rmique across a series (i.e., the actinides and the first two rows of the d-block), the fact that all lanthanides primarily adopt the tripositive oxidation state means that this particular row of elements exhibits a traceable change in properties in a way that is not observed elsewhere in the periodic table. Lanthanides behave similarly in reactions as long as the mnnber of 4f electrons is conserved (29). Thus, lanthanide substitution can be used as a tool to tune the ionic radius in a lanthanide complex to better elucidate physical properties. [Pg.5]

Lanthanides Element Valence shelP Ionic radius (pm) M3 Actinides Element Valence shell Ionic radius (pm) M3 M" ... [Pg.23]

One probably can predict some of the crystallographic properties, of the tetrapositive element 104 by extrapolation from those of its homologs zirconium and hafnium. The ionic radii of tetrapositive zirconium (0.74 A) and hafnium (0.75 A) suggest an ionic radius of about 0.78 A for tetrapositive element 104, allowing for the smaller actinide rather than lanthanide contraction. Further one would expect the hydrolytic properties of element 104 and the solubilities of its compounds (such as the fluoride) to be similar to those of hafnium. The sum of... [Pg.114]

Similarities exist between the chemical characteristics of the actinides and those of the lanthanides. The metal ions are generally considered to be relatively hard Lewis acids, susceptible to complexation by hard (i.e., first row donor atom) ligands and to hydrolysis. Both actinide and lanthanide ions are affected by the lanthanide contraction, resulting in a contraction of ionic radius and an increasing reluctance to exhibit higher oxidation states later in the series. Most species are paramagnetic, although the electron spin-nuclear spin relaxation times often permit observation of NMR spectra, and disfavor observation of ESR spectra except at low temperatures. The elements display more than one accessible oxidation state, and one-electron redox chemistry is common. [Pg.191]


See other pages where Actinides ionic radii is mentioned: [Pg.86]    [Pg.214]    [Pg.224]    [Pg.329]    [Pg.1271]    [Pg.13]    [Pg.74]    [Pg.103]    [Pg.50]    [Pg.33]    [Pg.48]    [Pg.63]    [Pg.41]    [Pg.566]    [Pg.33]    [Pg.865]    [Pg.67]    [Pg.259]    [Pg.332]    [Pg.171]    [Pg.329]    [Pg.234]    [Pg.214]    [Pg.224]    [Pg.19]    [Pg.28]    [Pg.168]    [Pg.54]    [Pg.48]    [Pg.447]    [Pg.371]    [Pg.466]    [Pg.469]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Actinide radii

Ionic radius

© 2024 chempedia.info