Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile structure

Fig. 100 Nonisothemal chemiluminograms for some poly (acrylonitrile) structures. The data were taken from [08J1]. Fig. 100 Nonisothemal chemiluminograms for some poly (acrylonitrile) structures. The data were taken from [08J1].
Several other elastic materials may be made by copolymerising one of the above monomers with lesser amounts of one or more monomers. Notable amongst these are SBR, a copolymer of butadiene and styrene, and nitrile rubber (NBR), a copolymer of butadiene and acrylonitrile. The natural rubber molecule is structurally a c/i -1,4-polyisoprene so that it is convenient to consider natural rubber in this chapter. Some idea of the relative importance of these materials may be gauged from the data in Table 11.14. [Pg.281]

In addition to homopolymers of varying molecular and particle structure, copolymers are also available commercially in which vinyl chloride is the principal monomer. Comonomers used eommercially include vinyl acetate, vinylidene chloride, propylene, acrylonitrile, vinyl isobutyl ether, and maleic, fumaric and acrylic esters. Of these the first three only are of importance to the plastics industry. The main function of introducing comonomer is to reduce the regularity of the polymer structure and thus lower the interchain forces. The polymers may therefore be proeessed at much lower temperatures and are useful in the manufacture of gramophone records and flooring compositions. [Pg.325]

The product from acrylonitrile will withstand a bunsen flame in the open air and is the basis of one type of carbon fibre. None of the polymers produced by this route have a high degree of perfection in their ladder structure. [Pg.850]

Samal et al. [25] reported that Ce(IV) ion coupled with an amide, such as thioacetamide, succinamide, acetamide, and formamide, could initiate acrylonitrile (AN) polymerization in aqueous solution. Feng et al. [3] for the first time thoroughly investigated the structural effect of amide on AAM polymerization using Ce(IV) ion, ceric ammonium nitrate (CAN) as an initiator. They found that only acetanilide (AA) and formanilide (FA) promote the polymerization and remarkably enhance Rp. The others such as formamide, N,N-dimethylformamide (DMF), N-butylacetamide, and N-cyclohexylacetamide only slightly affect the rate of polymerization. This can be shown by the relative rate (/ r), i.e., the rate of AAM polymerization initiated with ceric ion-amide divided by the rate of polymerization initiated with ceric ion alone. Rr for CAN-anilide system is approximately 2.5, and the others range from 1.04-1.11. [Pg.542]

Although, the heat resistance of NBR is directly related to the increase in acrylonitrile content (ACN) of the elastomer, the presence of double bond in the polymer backbone makes it susceptible to heat, ozone, and light. Therefore, several strategies have been adopted to modify the nitrile rubber by physical and chemical methods in order to improve its properties and degradation behavior. The physical modification involves the mechanical blending of NBR with other polymers or chemical ingredients to achieve the desired set of properties. The chemical modifications, on the other hand, include chemical reactions, which impart structural changes in the polymer chain. [Pg.555]

Composite proplnts, which are used almost entirely in rocket propulsion, normally contain a solid phase oxidizer combined with a polymeric fuel binder with a -CH2—CH2— structure. Practically speaking AP is the only oxidizer which has achieved high volume production, although ammonium nitrate (AN) has limited special uses such as in gas generators. Other oxidizers which have been studied more or less as curiosities include hydrazinium nitrate, nitronium perchlorate, lithium perchlorate, lithium nitrate, potassium perchlorate and others. Among binders, the most used are polyurethanes, polybutadiene/acrylonitrile/acrylic acid terpolymers and hydroxy-terminated polybutadienes... [Pg.886]

Molybdenum, tris(phenylenedithio)-structure, 1,63 Molybdenum alkoxides physical properties, 2,346 synthesis, 2,339 Molybdenum blue liquid-liquid extraction, 1,548 Molybdenum cofactor, 6,657 Molybdenum complexes acrylonitrile, 2,263 alkoxides, 3,1307 alkoxy carbonyl reactions, 2,355 alkyl, 3,1307 alkyl alkoxy reactions, 2,358 alkyl peroxides oxidation catalyses, 6,342 allyl, 3,1306... [Pg.166]

Waters61 have measured relative rates of p-toluenesulfonyl radical addition to substituted styrenes, deducing from the value of p + = — 0.50 in the Hammett plot that the sulfonyl radical has an electrophilic character (equation 21). Further indications that sulfonyl radicals are strongly electrophilic have been obtained by Takahara and coworkers62, who measured relative reactivities for the addition reactions of benzenesulfonyl radicals to various vinyl monomers and plotted rate constants versus Hammett s Alfrey-Price s e values these relative rates are spread over a wide range, for example, acrylonitrile (0.006), methyl methacrylate (0.08), styrene (1.00) and a-methylstyrene (3.21). The relative rates for the addition reaction of p-methylstyrene to styrene towards methane- and p-substituted benzenesulfonyl radicals are almost the same in accord with their type structure discussed earlier in this chapter. [Pg.1103]

The reaction of methyl acrylate and acrylonitrile with pentacarbonyl[(iV,iV -di-methylamino)methylene] chromium generates trisubstituted cyclopentanes through a formal [2S+2S+1C] cycloaddition reaction, where two molecules of the olefin and one molecule of the carbene complex have been incorporated into the structure of the cyclopentane [17b] (Scheme 73). The mechanism of this reaction implies a double insertion of two molecules of the olefin into the carbene complex followed by a reductive elimination. [Pg.107]

Emulsion polymerization is the most important process for production of elastic polymers based on butadiene. Copolymers of butadiene with styrene and acrylonitrile have attained particular significance. Polymerized 2-chlorobutadiene is known as chloroprene rubber. Emulsion polymerization provides the advantage of running a low viscosity during the entire time of polymerization. Hence the temperature can easily be controlled. The polymerizate is formed as a latex similar to natural rubber latex. In this way the production of mixed lattices is relieved. The temperature of polymerization is usually 50°C. Low-temperature polymerization is carried out by the help of redox systems at a temperature of 5°C. This kind of polymerization leads to a higher amount of desired trans-1,4 structures instead of cis-1,4 structures. Chloroprene rubber from poly-2-chlorbutadiene is equally formed by emulsion polymerization. Chloroprene polymerizes considerably more rapidly than butadiene and isoprene. Especially in low-temperature polymerization emulsifiers must show good solubility and... [Pg.602]

Acrylonitrile, CH,CHCN, is used in the synthesis of acrylic fibers (polyacrylonitriles), such as Orion. Write the Lewis structure of acrylonitrile and describe the hybrid orbitals on each carbon atom. What are the approximate values of the bond angles ... [Pg.253]

Frenkel R., Duchacek V., Kirillova T., and Kuz min E. Thermodynamic and structural properties of acrylonitrile butadiene rubber/polyethylene blends, J. Appl. Polym. Sci., 34, 1301, 1987. [Pg.163]

The correlation in Figure 13.1 allows the prediction of 8 required for a cross-linked rabber with a desired oil resistance. For example, the structure of EPDM has to be modified in such a way that a 8 outside the range of 13.5-18.0 (J/cm ) is achieved in order to have an oil swell similar to HNBR20 (hydrogenated nitrile mbber with 20% acrylonitrile). [Pg.398]

The data analyzed in this work were reported by Hill et al. ( ) for the copolymerization of styrene with acrylonitrile. They are shown in Table III in the form of triad fractions measured by C-NMR for copolymers produced at various feed compositions. One reason for choosing this particular dataset is that the authors did indicate the error structure of their measurement. [Pg.290]

Acrylonitrile, H2 CCHCN, is used to manufacture polymers for synthetic fibers. Draw the Lewis structure of acrylonitrile. [Pg.592]

Polyacrylonitrile, known commercially as Orion, is made by polymerizing acrylonitrile (see Figure 13-3) Orion is used to make fibers for carpeting and clothing. Draw the Lewis structure of polyacrylonitrile, showing at least three repeat units. [Pg.900]

Acrylonitrile polymerizes in the same way as ethylene. Notice that this polymer has the same structure as polyethylene, except that a CN group is attached to every second carbon atom, so the structure is a reasonable one. A line structure of polyacrylonitrile eliminates the clutter caused by the H atoms. A ball-and-stick model of the same polymer segment is included for comparison. [Pg.901]

V-Sb-oxide based catalysts show interesting catal)dic properties in the direct synthesis of acrylonitrile from propane [1,2], a new alternative option to the commercial process starting from propylene. However, further improvement of the selectivity to acrylonitrile would strengthen interest in the process. Optimization of the behavior of Sb-V-oxide catalysts requires a thorough analysis of the relationship between structural/surface characteristics and catalytic properties. Various studies have been reported on the analysis of this relationship [3-8] and on the reaction kinetics [9,10], but little attention has been given to the study of the surface reactivity of V-Sb-oxide in the transformation of possible intermediates and on the identification of the sxirface mechanism of reaction. [Pg.277]

Scheme 5-4 Platinum-catalyzed hydrophosphination of acrylonitrile using PH3 (Eq. I) and PH (CH2CH2CN)2 (Eq. 2). The proposed structure of a telomeric by-product of this reaction (I) Is also shown... Scheme 5-4 Platinum-catalyzed hydrophosphination of acrylonitrile using PH3 (Eq. I) and PH (CH2CH2CN)2 (Eq. 2). The proposed structure of a telomeric by-product of this reaction (I) Is also shown...
Carbene reactivity is strongly affected by substituents.117 Various singlet carbenes have been characterized as nucleophilic, ambiphilic, and electrophilic as shown in Table 10.2 This classification is based on relative reactivity toward a series of both nucleophilic alkenes, such as tetramethylethylene, and electrophilic ones, such as acrylonitrile. The principal structural feature that determines the reactivity of the carbene is the ability of the substituent to act as an electron donor. For example, dimethoxycarbene is devoid of electrophilicity toward alkenes because of electron donation by the methoxy groups.118... [Pg.906]


See other pages where Acrylonitrile structure is mentioned: [Pg.10]    [Pg.10]    [Pg.122]    [Pg.927]    [Pg.87]    [Pg.332]    [Pg.568]    [Pg.570]    [Pg.822]    [Pg.513]    [Pg.49]    [Pg.427]    [Pg.4]    [Pg.12]    [Pg.347]    [Pg.8]    [Pg.37]    [Pg.395]    [Pg.1058]    [Pg.279]    [Pg.244]    [Pg.132]    [Pg.23]    [Pg.94]    [Pg.66]    [Pg.212]    [Pg.599]    [Pg.182]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Acrolein/acrylonitrile structure

Acrylonitrile butadiene styrene structure

Acrylonitrile-butadiene-styrene chemical structure

© 2024 chempedia.info