Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic acid, radical polymerization

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

Water-soluble polymers obtained through a radical polymerization [e.g., poly(acrylic acid) PAA] often contain sodium sulfate Na2S04 as a decomposition product of the initiator. The peak of Na2S04 is eluted before the dimer. In the interpretation of the chromatogram, a typical GPC program has to be truncated before the Na2S04 peak, or at a Mpaa value of about 200. The calibration curve in this region can be flattened by an additive small pore column as well, but the principle problem remains unsolved. [Pg.440]

Manufacture of highly water-absorbent polymers with uniform particle size and good flowability can be carried out by reverse phase suspension polymerization of (meth)acrylic acid monomers in a hydrocarbon solvent containing crosslinker and radical initiator. Phosphoric acid monoester or diester of alka-nole or ethoxylated alkanole is used as surfactant. A polymer with water-absorbent capacity of 78 g/g polymer can be obtained [240]. [Pg.605]

Yin et al. [73,74] prepared new microgel star amphiphiles and stndied the compression behavior at the air-water interface. Particles were prepared in a two-step process. First, the gel core was synthesized by copolymerization of styrene and divinylbenzene in diox-ane using benzoylperoxide as initiator. Microgel particles 20 run in diameter were obtained. Second, the gel core was grafted with acrylic or methacryUc acid by free radical polymerization, resulting in amphiphilic polymer particles. These particles were spread from a dimethylformamide/chloroform (1 4) solution at the air-water interface. tt-A cnrves indicated low compressibility above lOmNm and collapse pressnres larger than 40 mNm With increase of the hydrophilic component, the molecnlar area of the polymer and the collapse pressure increased. [Pg.216]

The most common poly(alkenoic acid) used in polyalkenoate, ionomer or polycarboxylate cements is poly(acrylic acid), PAA. In addition, copolymers of acrylic acid with other alkenoic acids - maleic and itaconic and 3-butene 1,2,3-tricarboxylic acid - may be employed (Crisp Wilson, 1974c, 1977 Crisp et al, 1980). These polyacids are prepared by free-radical polymerization in aqueous solution using ammonium persulphate as the initiator and propan-2-ol (isopropyl alcohol) as the chain transfer agent (Smith, 1969). The concentration of poly(alkenoic add) is kept below 25 % to avoid the danger of explosion. After polymerization the solution is concentrated to 40-50 % for use. [Pg.97]

Lignin, brown coal polymer of methacrylic acid, methacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, vinyl acetate, methyl vinyl ether, ethyl vinyl ether, N-methylmeth-acrylamide, N,N-dimethylmethacrylamide, vinyl sulfonate, or 2-acrylamido-N-methylpropane sulfonic acid free radical polymerization of a water-soluble vinyl monomer in an aqueous suspension of coals [705,1847]... [Pg.57]

We make polyethylene resins using two basic types of chain growth reaction free radical polymerization and coordination catalysis. We use free radical polymerization to make low density polyethylene, ethylene-vinyl ester copolymers, and the ethylene-acrylic acid copolymer precursors for ethylene ionomers. We employ coordination catalysts to make high density polyethylene, linear low density polyethylene, and very low density polyethylene. [Pg.288]

The tacky polymeric microspheres that comprise the pressure-sensitive adhesive layers of repositionable notes are patented inventions. One such material (U.S. Patent 5,714,237) is prepared by a free-radical polymerization reaction of isooctyl acrylate (Fig. 14.3.1) in the presence of polyacrylic acid with a chain-... [Pg.214]

The bulk polymerization of acrylonitrile in this range of temperatures exhibits kinetic features very similar to those observed with acrylic acid (cf. Table I). The very low over-all activation energies (11.3 and 12.5 Kj.mole-l) found in both systems suggest a high temperature coefficient for the termination step such as would be expected for a diffusion controlled bimolecular reaction involving two polymeric radicals. It follows that for these systems, in which radicals disappear rapidly and where the post-polymerization is strongly reduced, the concepts of nonsteady-state and of occluded polymer chains can hardly explain the observed auto-acceleration. Hence the auto-acceleration of acrylonitrile which persists above 60°C and exhibits the same "autoacceleration index" as at lower temperatures has to be accounted for by another cause. [Pg.244]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]

Ladaviere C, Dorr N, Claverie IP (2001) Controlled radical polymerization of acrylic acid in protic media. Macromolecules 34 5370-5372... [Pg.61]

Couvreur L, Lefay C, Belleney 1 (2003) First nitroxide-mediated controlled free-radical polymerization of acrylic acid. Macromolecules 36 8260-8267... [Pg.61]

Depending on the monomer, one needs to adjust the components of the system as well as reaction conditions so that radical concentrations are sufficiently low to effectively suppress normal termination. The less reactive monomers, such as ethylene, vinyl chloride, and vinyl acetate, have not been polymerized by ATRP. Acidic monomers such as acrylic acid are not polymerized because they interfere with the initiator by protonation of the ligands. The car-boxylate salts of acidic monomers are polymerized without difficulty. New ATRP initiators and catalysts together with modification of reaction conditions may broaden the range of polymerizable monomers in the future. [Pg.320]

These superabsorbents are synthesized via free radical polymerization of acrylic acid or its salts in presence of a crosslinker (crosslinking copolymerization). Initiators are commonly used, water-soluble compounds (e.g., peroxodi-sulfates, redox systems). As crosslinking comonomers bis-methacrylates or N,hT-methylenebis-(acrylamide) are mostly applied. The copolymerization can be carried out in aqueous solution (see Example 5-11 or as dispersion of aqueous drops in a hydrocarbon (inverse emulsion polymerization, see Sect. 2.2.4.2). [Pg.349]

Many ionogenic monomers containing a polymerizable carbon double bond have been reported in the literature, and therefore a wide variety of anionic, cationic, and amphophilic polyelectrolytes may be synthesized using free radical polymerizations. Examples of anionic ionogenic monomers which have been used to synthesize anionic polyelectrolytes include acrylic acid [4-10], methac-rylic acid [6-8,11,12], sodium styrenesulfonate [7,13,14], p-styrene carboxylic... [Pg.4]


See other pages where Acrylic acid, radical polymerization is mentioned: [Pg.404]    [Pg.203]    [Pg.976]    [Pg.27]    [Pg.202]    [Pg.13]    [Pg.453]    [Pg.355]    [Pg.487]    [Pg.153]    [Pg.485]    [Pg.762]    [Pg.591]    [Pg.31]    [Pg.259]    [Pg.165]    [Pg.184]    [Pg.165]    [Pg.210]    [Pg.213]    [Pg.5]    [Pg.25]    [Pg.60]    [Pg.125]    [Pg.153]    [Pg.287]    [Pg.288]    [Pg.289]    [Pg.83]    [Pg.75]    [Pg.5]    [Pg.183]    [Pg.131]    [Pg.565]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Acid radicals

Acidic radicals

Acryl radical

Acrylate radicals

Acrylates, polymerization

Acrylic acid polymerization

Acrylic polymerization

Radical polymerization of acrylic acid

© 2024 chempedia.info